Jacobson Hopfian modules

The study of modules by properties of their endomorphisms has long been of interest. In this paper we introduce a proper generalization of that of Hopfian modules, called Jacobson Hopfian modules. A right \(R\)-module \(M\) is said to be Jacobson Hopfian, if any surjective endomorphism of \(M\) has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
Hauptverfasser: El Moussaouy, A., Moniri Hamzekolaee, A., Ziane, M.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2022
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1842
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:The study of modules by properties of their endomorphisms has long been of interest. In this paper we introduce a proper generalization of that of Hopfian modules, called Jacobson Hopfian modules. A right \(R\)-module \(M\) is said to be Jacobson Hopfian, if any surjective endomorphism of \(M\) has a Jacobson-small kernel. We characterize the rings \(R\) for which every finitely generated free \(R\)-module is Jacobson Hopfian. We prove that a ring \(R\) is semisimple if and only if every \(R\)-module is Jacobson Hopfian. Some other properties and characterizations of Jacobson Hopfian modules are also obtained with examples. Further, we prove that the Jacobson Hopfian property is preserved under Morita equivalences.