Jacobson Hopfian modules

The study of modules by properties of their endomorphisms has long been of interest. In this paper we introduce a proper generalization of that of Hopfian modules, called Jacobson Hopfian modules. A right \(R\)-module \(M\) is said to be Jacobson Hopfian, if any surjective endomorphism of \(M\) has...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: El Moussaouy, A., Moniri Hamzekolaee, A., Ziane, M.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1842
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543055119646720
author El Moussaouy, A.
Moniri Hamzekolaee, A.
Ziane, M.
author_facet El Moussaouy, A.
Moniri Hamzekolaee, A.
Ziane, M.
author_sort El Moussaouy, A.
baseUrl_str
collection OJS
datestamp_date 2022-06-15T04:49:44Z
description The study of modules by properties of their endomorphisms has long been of interest. In this paper we introduce a proper generalization of that of Hopfian modules, called Jacobson Hopfian modules. A right \(R\)-module \(M\) is said to be Jacobson Hopfian, if any surjective endomorphism of \(M\) has a Jacobson-small kernel. We characterize the rings \(R\) for which every finitely generated free \(R\)-module is Jacobson Hopfian. We prove that a ring \(R\) is semisimple if and only if every \(R\)-module is Jacobson Hopfian. Some other properties and characterizations of Jacobson Hopfian modules are also obtained with examples. Further, we prove that the Jacobson Hopfian property is preserved under Morita equivalences.
first_indexed 2025-12-02T15:50:06Z
format Article
id admjournalluguniveduua-article-1842
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:50:06Z
publishDate 2022
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-18422022-06-15T04:49:44Z Jacobson Hopfian modules El Moussaouy, A. Moniri Hamzekolaee, A. Ziane, M. Hopfian modules, generalized Hopfian modules, Jacobson Hopfian modules, Dedekind finite modules 16D10, 16D40, 16D90 The study of modules by properties of their endomorphisms has long been of interest. In this paper we introduce a proper generalization of that of Hopfian modules, called Jacobson Hopfian modules. A right \(R\)-module \(M\) is said to be Jacobson Hopfian, if any surjective endomorphism of \(M\) has a Jacobson-small kernel. We characterize the rings \(R\) for which every finitely generated free \(R\)-module is Jacobson Hopfian. We prove that a ring \(R\) is semisimple if and only if every \(R\)-module is Jacobson Hopfian. Some other properties and characterizations of Jacobson Hopfian modules are also obtained with examples. Further, we prove that the Jacobson Hopfian property is preserved under Morita equivalences. Lugansk National Taras Shevchenko University 2022-06-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1842 10.12958/adm1842 Algebra and Discrete Mathematics; Vol 33, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1842/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1842/891 Copyright (c) 2022 Algebra and Discrete Mathematics
spellingShingle Hopfian modules
generalized Hopfian modules, Jacobson Hopfian modules
Dedekind finite modules
16D10
16D40
16D90
El Moussaouy, A.
Moniri Hamzekolaee, A.
Ziane, M.
Jacobson Hopfian modules
title Jacobson Hopfian modules
title_full Jacobson Hopfian modules
title_fullStr Jacobson Hopfian modules
title_full_unstemmed Jacobson Hopfian modules
title_short Jacobson Hopfian modules
title_sort jacobson hopfian modules
topic Hopfian modules
generalized Hopfian modules, Jacobson Hopfian modules
Dedekind finite modules
16D10
16D40
16D90
topic_facet Hopfian modules
generalized Hopfian modules, Jacobson Hopfian modules
Dedekind finite modules
16D10
16D40
16D90
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1842
work_keys_str_mv AT elmoussaouya jacobsonhopfianmodules
AT monirihamzekolaeea jacobsonhopfianmodules
AT zianem jacobsonhopfianmodules