On classifying the non-Tits \(P\)-critical posets

In 2005, the authors described all introduced by them \(P\)-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by u...

Full description

Saved in:
Bibliographic Details
Date:2022
Main Authors: Bondarenko, V. M., Styopochkina, M. V.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2022
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1912
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:In 2005, the authors described all introduced by them \(P\)-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits \(P\)-critical posets as a special case of the \(P\)-critical posets. In this paper we classify all the non-Tits \(P\)-critical posets without complex calculations and without using the list of all \(P\)-critical ones.