Classical groups as Frobenius complement

The Frobenius group \(G\) belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that \(G\) is a semi-direct product of a normal subgroup \(K\) of \(G\) called kernel by another non-trivial subgroup \(H\) called the complement. In this case we...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Darefsheh, M., Saydi, H.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543344433299456
author Darefsheh, M.
Saydi, H.
author_facet Darefsheh, M.
Saydi, H.
author_sort Darefsheh, M.
baseUrl_str
collection OJS
datestamp_date 2023-06-18T17:42:42Z
description The Frobenius group \(G\) belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that \(G\) is a semi-direct product of a normal subgroup \(K\) of \(G\) called kernel by another non-trivial subgroup \(H\) called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement.
first_indexed 2026-02-08T07:57:46Z
format Article
id admjournalluguniveduua-article-1929
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:57:46Z
publishDate 2023
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-19292023-06-18T17:42:42Z Classical groups as Frobenius complement Darefsheh, M. Saydi, H. classical group, Frobenius group, Frobenius complement 20H20, 20F50 The Frobenius group \(G\) belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that \(G\) is a semi-direct product of a normal subgroup \(K\) of \(G\) called kernel by another non-trivial subgroup \(H\) called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement. Lugansk National Taras Shevchenko University 2023-06-18 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929 10.12958/adm1929 Algebra and Discrete Mathematics; Vol 35, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1929/954 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1929/1082 Copyright (c) 2023 Algebra and Discrete Mathematics
spellingShingle classical group
Frobenius group
Frobenius complement
20H20
20F50
Darefsheh, M.
Saydi, H.
Classical groups as Frobenius complement
title Classical groups as Frobenius complement
title_full Classical groups as Frobenius complement
title_fullStr Classical groups as Frobenius complement
title_full_unstemmed Classical groups as Frobenius complement
title_short Classical groups as Frobenius complement
title_sort classical groups as frobenius complement
topic classical group
Frobenius group
Frobenius complement
20H20
20F50
topic_facet classical group
Frobenius group
Frobenius complement
20H20
20F50
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929
work_keys_str_mv AT darefshehm classicalgroupsasfrobeniuscomplement
AT saydih classicalgroupsasfrobeniuscomplement