Unimodality polynomials and generalized Pascal triangles
In this paper, we show that if \(P(x)=\sum_{k=0}^{m}a_{k}x^{k}\) is a polynomial with nondecreasing, nonnegative coefficients, then the coefficients sequence of \(P(x^{s}+\cdots +x+1)\) is unimodal for each integer \(s\geq 1\). This paper is an extension of Boros and Moll's result ``A criterion...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/193 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-193 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-1932018-10-20T08:02:25Z Unimodality polynomials and generalized Pascal triangles Ahmia, Moussa Belbachir, Hacène unimodality, log-concavity, ordinary multinomials, Pascal triangle 15A04, 11B65, 05A19, 52A37 In this paper, we show that if \(P(x)=\sum_{k=0}^{m}a_{k}x^{k}\) is a polynomial with nondecreasing, nonnegative coefficients, then the coefficients sequence of \(P(x^{s}+\cdots +x+1)\) is unimodal for each integer \(s\geq 1\). This paper is an extension of Boros and Moll's result ``A criterion for unimodality'', who proved that the polynomial \(P(x+1)\) is unimodal. Lugansk National Taras Shevchenko University 2018-10-20 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/193 Algebra and Discrete Mathematics; Vol 26, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/193/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/193/70 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/193/78 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/193/79 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-10-20T08:02:25Z |
| collection |
OJS |
| language |
English |
| topic |
unimodality log-concavity ordinary multinomials Pascal triangle 15A04 11B65 05A19 52A37 |
| spellingShingle |
unimodality log-concavity ordinary multinomials Pascal triangle 15A04 11B65 05A19 52A37 Ahmia, Moussa Belbachir, Hacène Unimodality polynomials and generalized Pascal triangles |
| topic_facet |
unimodality log-concavity ordinary multinomials Pascal triangle 15A04 11B65 05A19 52A37 |
| format |
Article |
| author |
Ahmia, Moussa Belbachir, Hacène |
| author_facet |
Ahmia, Moussa Belbachir, Hacène |
| author_sort |
Ahmia, Moussa |
| title |
Unimodality polynomials and generalized Pascal triangles |
| title_short |
Unimodality polynomials and generalized Pascal triangles |
| title_full |
Unimodality polynomials and generalized Pascal triangles |
| title_fullStr |
Unimodality polynomials and generalized Pascal triangles |
| title_full_unstemmed |
Unimodality polynomials and generalized Pascal triangles |
| title_sort |
unimodality polynomials and generalized pascal triangles |
| description |
In this paper, we show that if \(P(x)=\sum_{k=0}^{m}a_{k}x^{k}\) is a polynomial with nondecreasing, nonnegative coefficients, then the coefficients sequence of \(P(x^{s}+\cdots +x+1)\) is unimodal for each integer \(s\geq 1\). This paper is an extension of Boros and Moll's result ``A criterion for unimodality'', who proved that the polynomial \(P(x+1)\) is unimodal. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/193 |
| work_keys_str_mv |
AT ahmiamoussa unimodalitypolynomialsandgeneralizedpascaltriangles AT belbachirhacene unimodalitypolynomialsandgeneralizedpascaltriangles |
| first_indexed |
2025-12-02T15:30:38Z |
| last_indexed |
2025-12-02T15:30:38Z |
| _version_ |
1850412056566562816 |