Double-toroidal and \(1\)-planar non-commuting graph of a group

Let \(G\) be a finite non-abelian group and denote by \(Z(G)\) its center. The non-commuting graph of \(G\) on a transversal of the center is the graph whose vertices are the non-central elements of a transversal of \(Z(G)\) in \(G\) and two vertices \(x\) and \(y\) are adjacent whenever \(xy\neq yx...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Pezzott, J. C. M.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1935
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543246134542336
author Pezzott, J. C. M.
author_facet Pezzott, J. C. M.
author_sort Pezzott, J. C. M.
baseUrl_str
collection OJS
datestamp_date 2023-02-08T16:55:57Z
description Let \(G\) be a finite non-abelian group and denote by \(Z(G)\) its center. The non-commuting graph of \(G\) on a transversal of the center is the graph whose vertices are the non-central elements of a transversal of \(Z(G)\) in \(G\) and two vertices \(x\) and \(y\) are adjacent whenever \(xy\neq yx\). In this work, we classify the finite non-abelian groups whose non-commuting graph on a transversal of the center is double-toroidal or \(1\)-planar.
first_indexed 2025-12-02T15:30:41Z
format Article
id admjournalluguniveduua-article-1935
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:30:41Z
publishDate 2023
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-19352023-02-08T16:55:57Z Double-toroidal and \(1\)-planar non-commuting graph of a group Pezzott, J. C. M. non-commuting graph, double-toroidal graph, \(1\)-planar graph, isoclinism 05C25, 05C10 Let \(G\) be a finite non-abelian group and denote by \(Z(G)\) its center. The non-commuting graph of \(G\) on a transversal of the center is the graph whose vertices are the non-central elements of a transversal of \(Z(G)\) in \(G\) and two vertices \(x\) and \(y\) are adjacent whenever \(xy\neq yx\). In this work, we classify the finite non-abelian groups whose non-commuting graph on a transversal of the center is double-toroidal or \(1\)-planar. Lugansk National Taras Shevchenko University 2023-02-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1935 10.12958/adm1935 Algebra and Discrete Mathematics; Vol 34, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1935/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1935/958 Copyright (c) 2023 Algebra and Discrete Mathematics
spellingShingle non-commuting graph
double-toroidal graph
\(1\)-planar graph
isoclinism
05C25
05C10
Pezzott, J. C. M.
Double-toroidal and \(1\)-planar non-commuting graph of a group
title Double-toroidal and \(1\)-planar non-commuting graph of a group
title_full Double-toroidal and \(1\)-planar non-commuting graph of a group
title_fullStr Double-toroidal and \(1\)-planar non-commuting graph of a group
title_full_unstemmed Double-toroidal and \(1\)-planar non-commuting graph of a group
title_short Double-toroidal and \(1\)-planar non-commuting graph of a group
title_sort double-toroidal and \(1\)-planar non-commuting graph of a group
topic non-commuting graph
double-toroidal graph
\(1\)-planar graph
isoclinism
05C25
05C10
topic_facet non-commuting graph
double-toroidal graph
\(1\)-planar graph
isoclinism
05C25
05C10
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1935
work_keys_str_mv AT pezzottjcm doubletoroidaland1planarnoncommutinggraphofagroup