Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
We obtain an explicit crystal isomorphism between two realizations of crystal bases of finite dimensional irreducible representations of simple Lie algebras of type \(A\) and \(D\). The first realization we consider is a geometric construction in terms of irreducible components of certain Nakajima q...
Gespeichert in:
| Datum: | 2023 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2023
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1952 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | We obtain an explicit crystal isomorphism between two realizations of crystal bases of finite dimensional irreducible representations of simple Lie algebras of type \(A\) and \(D\). The first realization we consider is a geometric construction in terms of irreducible components of certain Nakajima quiver varieties established by Saito and the second is a realization in terms of isomorphism classes of quiver representations obtained by Reineke. We give a homological description of the irreducible components of Lusztig's quiver varieties which correspond to the crystal of a finite dimensional representation and describe the promotion operator in type A to obtain a geometric realization of Kirillov-Reshetikhin crystals. |
|---|