On Smith normal forms of \(q\)-Varchenko matrices

In this paper, we investigate \(q\)-Varchenko matrices for some hyperplane arrangements with symmetry in two and three dimensions, and prove that they have a Smith normal form over \(\mathbb Z[q]\).  In particular, we examine the hyperplane arrangement for the regular \(n\)-gon in the plane and the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Boulware, N., Jing, N., Misra, K. C.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2006
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:In this paper, we investigate \(q\)-Varchenko matrices for some hyperplane arrangements with symmetry in two and three dimensions, and prove that they have a Smith normal form over \(\mathbb Z[q]\).  In particular, we examine the hyperplane arrangement for the regular \(n\)-gon in the plane and the dihedral model in the space and Platonic polyhedra.  In each case, we prove that the \(q\)-Varchenko matrix associated with the hyperplane arrangement has a Smith normal form over \(\mathbb Z[q]\) and realize their congruent transformation matrices over \(\mathbb Z[q]\) as well.