A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)

Let \(k\) be a field of characteristic zero. For any polynomial mapping \(F=(F_1,\ldots,F_n):k^n\rightarrow k^n\) by multidegree of \(F\) we mean the following \(n\)-tuple of natural numbers mdeg \(F=(\deg F_1,\ldots,\deg F_n).\) Let us denote by \(k[x]=k[x_1,\ldots,x_n]\) a ring of polynomials in \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Karaś, M., Pękała, P.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2023
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2042
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2042
record_format ojs
spelling admjournalluguniveduua-article-20422023-12-11T16:21:07Z A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\) Karaś, M. Pękała, P. derivation, locally nilpotent derivation, polynomial automorphism, multidegree 13N15; 14R10; 16W20 Let \(k\) be a field of characteristic zero. For any polynomial mapping \(F=(F_1,\ldots,F_n):k^n\rightarrow k^n\) by multidegree of \(F\) we mean the following \(n\)-tuple of natural numbers mdeg \(F=(\deg F_1,\ldots,\deg F_n).\) Let us denote by \(k[x]=k[x_1,\ldots,x_n]\) a ring of polynomials in \(n\) variables \(x_1,\ldots,x_n\) over \(k.\) If \(D:k[x]\rightarrow k[x]\) is a locally nilpotent \(k\)-derivation, then one can define the automorphism \(\exp D\) of \(k\)-algebra \(k[x]\) and then the polynomial automorphism \((\exp D)_{\star}\) of \(k^n\). In this note we present a general upper bound of mdeg \((\exp D)_{\star}\) in the case of a triangular derivation \(D\), and also show that this estimataion is exact. Lugansk National Taras Shevchenko University 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2042 10.12958/adm2042 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2042/pdf Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-12-11T16:21:07Z
collection OJS
language English
topic derivation
locally nilpotent derivation
polynomial automorphism
multidegree
13N15
14R10
16W20
spellingShingle derivation
locally nilpotent derivation
polynomial automorphism
multidegree
13N15
14R10
16W20
Karaś, M.
Pękała, P.
A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)
topic_facet derivation
locally nilpotent derivation
polynomial automorphism
multidegree
13N15
14R10
16W20
format Article
author Karaś, M.
Pękała, P.
author_facet Karaś, M.
Pękała, P.
author_sort Karaś, M.
title A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)
title_short A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)
title_full A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)
title_fullStr A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)
title_full_unstemmed A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)
title_sort note on multidegrees of automorphisms of the form \((\exp d)_{\star}\)
description Let \(k\) be a field of characteristic zero. For any polynomial mapping \(F=(F_1,\ldots,F_n):k^n\rightarrow k^n\) by multidegree of \(F\) we mean the following \(n\)-tuple of natural numbers mdeg \(F=(\deg F_1,\ldots,\deg F_n).\) Let us denote by \(k[x]=k[x_1,\ldots,x_n]\) a ring of polynomials in \(n\) variables \(x_1,\ldots,x_n\) over \(k.\) If \(D:k[x]\rightarrow k[x]\) is a locally nilpotent \(k\)-derivation, then one can define the automorphism \(\exp D\) of \(k\)-algebra \(k[x]\) and then the polynomial automorphism \((\exp D)_{\star}\) of \(k^n\). In this note we present a general upper bound of mdeg \((\exp D)_{\star}\) in the case of a triangular derivation \(D\), and also show that this estimataion is exact.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2042
work_keys_str_mv AT karasm anoteonmultidegreesofautomorphismsoftheformexpdstar
AT pekałap anoteonmultidegreesofautomorphismsoftheformexpdstar
AT karasm noteonmultidegreesofautomorphismsoftheformexpdstar
AT pekałap noteonmultidegreesofautomorphismsoftheformexpdstar
first_indexed 2025-12-02T15:42:26Z
last_indexed 2025-12-02T15:42:26Z
_version_ 1850411735240933376