The Kloosterman sums on the ellipse

The main point of our research is to obtain the estimates for Kloosterman sums \(\widetilde{K}(\alpha,\beta;h,q;k)\) considered on the ellipse bound for the case of the integer rational module \(q\) and for some natural number \(k\) with conditions \((\alpha,q)=(\beta,q)=1\) on the integer numbers o...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Varbanets, S., Vorobyov, Y.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2023
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2048
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2048
record_format ojs
spelling admjournalluguniveduua-article-20482023-10-30T03:23:55Z The Kloosterman sums on the ellipse Varbanets, S. Vorobyov, Y. exponential sums, Kloosterman sums, asymptotic formulas, imaginary quadratic field 11L05, 11L07, 11T23 The main point of our research is to obtain the estimates for Kloosterman sums \(\widetilde{K}(\alpha,\beta;h,q;k)\) considered on the ellipse bound for the case of the integer rational module \(q\) and for some natural number \(k\) with conditions \((\alpha,q)=(\beta,q)=1\) on the integer numbers of imaginary quadratic field. These estimates can be used to construct the asymptotic formulas for the sum of divisors function \(\tau_\ell(\alpha)\) for \(\ell=2,3,\ldots\) over the ring of integer elements of imaginary quadratic field in arithmetic progression. Lugansk National Taras Shevchenko University 2023-10-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2048 10.12958/adm2048 Algebra and Discrete Mathematics; Vol 35, No 2 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2048/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2048/1033 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-10-30T03:23:55Z
collection OJS
language English
topic exponential sums
Kloosterman sums
asymptotic formulas
imaginary quadratic field
11L05
11L07
11T23
spellingShingle exponential sums
Kloosterman sums
asymptotic formulas
imaginary quadratic field
11L05
11L07
11T23
Varbanets, S.
Vorobyov, Y.
The Kloosterman sums on the ellipse
topic_facet exponential sums
Kloosterman sums
asymptotic formulas
imaginary quadratic field
11L05
11L07
11T23
format Article
author Varbanets, S.
Vorobyov, Y.
author_facet Varbanets, S.
Vorobyov, Y.
author_sort Varbanets, S.
title The Kloosterman sums on the ellipse
title_short The Kloosterman sums on the ellipse
title_full The Kloosterman sums on the ellipse
title_fullStr The Kloosterman sums on the ellipse
title_full_unstemmed The Kloosterman sums on the ellipse
title_sort kloosterman sums on the ellipse
description The main point of our research is to obtain the estimates for Kloosterman sums \(\widetilde{K}(\alpha,\beta;h,q;k)\) considered on the ellipse bound for the case of the integer rational module \(q\) and for some natural number \(k\) with conditions \((\alpha,q)=(\beta,q)=1\) on the integer numbers of imaginary quadratic field. These estimates can be used to construct the asymptotic formulas for the sum of divisors function \(\tau_\ell(\alpha)\) for \(\ell=2,3,\ldots\) over the ring of integer elements of imaginary quadratic field in arithmetic progression.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2048
work_keys_str_mv AT varbanetss thekloostermansumsontheellipse
AT vorobyovy thekloostermansumsontheellipse
AT varbanetss kloostermansumsontheellipse
AT vorobyovy kloostermansumsontheellipse
first_indexed 2025-12-02T15:35:24Z
last_indexed 2025-12-02T15:35:24Z
_version_ 1850411292705161216