Coarse selectors of groups

For a group \(G\), \(\mathcal{F}_G\) denotes the set of all non-empty finite subsets of \(G\). We extend the finitary coarse structure of \(G\) from \(G\times G\) to \(\mathcal{F}_G\times \mathcal{F}_G\) and say that a macro-uniform mapping \(f\colon \mathcal{F}_G \to \mathcal{F}_G\) (resp. \(f\colo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
1. Verfasser: Protasov, I.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2023
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2127
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2127
record_format ojs
spelling admjournalluguniveduua-article-21272023-10-30T03:22:37Z Coarse selectors of groups Protasov, I. finitary coarse structure, Cayley graph, selector 20F69, 54C65 For a group \(G\), \(\mathcal{F}_G\) denotes the set of all non-empty finite subsets of \(G\). We extend the finitary coarse structure of \(G\) from \(G\times G\) to \(\mathcal{F}_G\times \mathcal{F}_G\) and say that a macro-uniform mapping \(f\colon \mathcal{F}_G \to \mathcal{F}_G\) (resp. \(f\colon [G]^2 \to G\)) is a finitary selector (resp. 2-selector) of \(G\) if \(f(A)\in A\) for each \(A\in \mathcal{F}_G\) (resp. \( A \in [G]^2 \)). We prove that a group \(G\) admits a finitary selector if and only if \(G\) admits a 2-selector and if and only if \(G\) is a finite extension of an infinite cyclic subgroup or \(G\) is countable and locally finite. We use this result to characterize groups admitting linear orders compatible with finitary coarse structures. Lugansk National Taras Shevchenko University 2023-10-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2127 10.12958/adm2127 Algebra and Discrete Mathematics; Vol 35, No 2 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2127/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2127/1093 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-10-30T03:22:37Z
collection OJS
language English
topic finitary coarse structure
Cayley graph
selector
20F69
54C65
spellingShingle finitary coarse structure
Cayley graph
selector
20F69
54C65
Protasov, I.
Coarse selectors of groups
topic_facet finitary coarse structure
Cayley graph
selector
20F69
54C65
format Article
author Protasov, I.
author_facet Protasov, I.
author_sort Protasov, I.
title Coarse selectors of groups
title_short Coarse selectors of groups
title_full Coarse selectors of groups
title_fullStr Coarse selectors of groups
title_full_unstemmed Coarse selectors of groups
title_sort coarse selectors of groups
description For a group \(G\), \(\mathcal{F}_G\) denotes the set of all non-empty finite subsets of \(G\). We extend the finitary coarse structure of \(G\) from \(G\times G\) to \(\mathcal{F}_G\times \mathcal{F}_G\) and say that a macro-uniform mapping \(f\colon \mathcal{F}_G \to \mathcal{F}_G\) (resp. \(f\colon [G]^2 \to G\)) is a finitary selector (resp. 2-selector) of \(G\) if \(f(A)\in A\) for each \(A\in \mathcal{F}_G\) (resp. \( A \in [G]^2 \)). We prove that a group \(G\) admits a finitary selector if and only if \(G\) admits a 2-selector and if and only if \(G\) is a finite extension of an infinite cyclic subgroup or \(G\) is countable and locally finite. We use this result to characterize groups admitting linear orders compatible with finitary coarse structures.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2127
work_keys_str_mv AT protasovi coarseselectorsofgroups
first_indexed 2025-12-02T15:31:01Z
last_indexed 2025-12-02T15:31:01Z
_version_ 1850412062183784448