Ideally finite Leibniz algebras

The aim of this paper is to consider Leibniz algebras, whose principal ideals are finite dimensional. We prove that the derived ideal of \(L\) has finite dimension if every principal ideal of a Leibniz algebra \(L\) has dimension at most \(b\), where \(b\) is a fixed positive integer.

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Kurdachenko, L. A., Subbotin, I. Ya.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2023
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2139
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2139
record_format ojs
spelling admjournalluguniveduua-article-21392023-10-30T03:21:44Z Ideally finite Leibniz algebras Kurdachenko, L. A. Subbotin, I. Ya. Leibniz algebra, ideally finite algebras, Lie algebra, breadth of elements 17A32, 17A31 The aim of this paper is to consider Leibniz algebras, whose principal ideals are finite dimensional. We prove that the derived ideal of \(L\) has finite dimension if every principal ideal of a Leibniz algebra \(L\) has dimension at most \(b\), where \(b\) is a fixed positive integer. Lugansk National Taras Shevchenko University 2023-10-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2139 10.12958/adm2139 Algebra and Discrete Mathematics; Vol 35, No 2 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2139/pdf Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-10-30T03:21:44Z
collection OJS
language English
topic Leibniz algebra
ideally finite algebras
Lie algebra
breadth of elements
17A32
17A31
spellingShingle Leibniz algebra
ideally finite algebras
Lie algebra
breadth of elements
17A32
17A31
Kurdachenko, L. A.
Subbotin, I. Ya.
Ideally finite Leibniz algebras
topic_facet Leibniz algebra
ideally finite algebras
Lie algebra
breadth of elements
17A32
17A31
format Article
author Kurdachenko, L. A.
Subbotin, I. Ya.
author_facet Kurdachenko, L. A.
Subbotin, I. Ya.
author_sort Kurdachenko, L. A.
title Ideally finite Leibniz algebras
title_short Ideally finite Leibniz algebras
title_full Ideally finite Leibniz algebras
title_fullStr Ideally finite Leibniz algebras
title_full_unstemmed Ideally finite Leibniz algebras
title_sort ideally finite leibniz algebras
description The aim of this paper is to consider Leibniz algebras, whose principal ideals are finite dimensional. We prove that the derived ideal of \(L\) has finite dimension if every principal ideal of a Leibniz algebra \(L\) has dimension at most \(b\), where \(b\) is a fixed positive integer.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2139
work_keys_str_mv AT kurdachenkola ideallyfiniteleibnizalgebras
AT subbotiniya ideallyfiniteleibnizalgebras
first_indexed 2025-12-02T15:39:34Z
last_indexed 2025-12-02T15:39:34Z
_version_ 1850412147881803776