Ideally finite Leibniz algebras
The aim of this paper is to consider Leibniz algebras, whose principal ideals are finite dimensional. We prove that the derived ideal of \(L\) has finite dimension if every principal ideal of a Leibniz algebra \(L\) has dimension at most \(b\), where \(b\) is a fixed positive integer.
Gespeichert in:
| Datum: | 2023 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2023
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2139 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-2139 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-21392023-10-30T03:21:44Z Ideally finite Leibniz algebras Kurdachenko, L. A. Subbotin, I. Ya. Leibniz algebra, ideally finite algebras, Lie algebra, breadth of elements 17A32, 17A31 The aim of this paper is to consider Leibniz algebras, whose principal ideals are finite dimensional. We prove that the derived ideal of \(L\) has finite dimension if every principal ideal of a Leibniz algebra \(L\) has dimension at most \(b\), where \(b\) is a fixed positive integer. Lugansk National Taras Shevchenko University 2023-10-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2139 10.12958/adm2139 Algebra and Discrete Mathematics; Vol 35, No 2 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2139/pdf Copyright (c) 2023 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2023-10-30T03:21:44Z |
| collection |
OJS |
| language |
English |
| topic |
Leibniz algebra ideally finite algebras Lie algebra breadth of elements 17A32 17A31 |
| spellingShingle |
Leibniz algebra ideally finite algebras Lie algebra breadth of elements 17A32 17A31 Kurdachenko, L. A. Subbotin, I. Ya. Ideally finite Leibniz algebras |
| topic_facet |
Leibniz algebra ideally finite algebras Lie algebra breadth of elements 17A32 17A31 |
| format |
Article |
| author |
Kurdachenko, L. A. Subbotin, I. Ya. |
| author_facet |
Kurdachenko, L. A. Subbotin, I. Ya. |
| author_sort |
Kurdachenko, L. A. |
| title |
Ideally finite Leibniz algebras |
| title_short |
Ideally finite Leibniz algebras |
| title_full |
Ideally finite Leibniz algebras |
| title_fullStr |
Ideally finite Leibniz algebras |
| title_full_unstemmed |
Ideally finite Leibniz algebras |
| title_sort |
ideally finite leibniz algebras |
| description |
The aim of this paper is to consider Leibniz algebras, whose principal ideals are finite dimensional. We prove that the derived ideal of \(L\) has finite dimension if every principal ideal of a Leibniz algebra \(L\) has dimension at most \(b\), where \(b\) is a fixed positive integer. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2023 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2139 |
| work_keys_str_mv |
AT kurdachenkola ideallyfiniteleibnizalgebras AT subbotiniya ideallyfiniteleibnizalgebras |
| first_indexed |
2025-12-02T15:39:34Z |
| last_indexed |
2025-12-02T15:39:34Z |
| _version_ |
1850412147881803776 |