On a finite state representation of \(GL(n,\mathbb{Z})\)

It is examined finite state automorphisms of regular rooted trees constructed in [6] to represent groups \(GL(n,\mathbb{Z})\).  The number of states of automorphisms that correspond to elementary matrices is computed. Using the representation of \(GL(2,\mathbb{Z})\) over an alphabet of size \(4\)  a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Oliynyk, A., Prokhorchuk, V.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2158
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543143042744320
author Oliynyk, A.
Prokhorchuk, V.
author_facet Oliynyk, A.
Prokhorchuk, V.
author_sort Oliynyk, A.
baseUrl_str
collection OJS
datestamp_date 2023-12-11T16:21:07Z
description It is examined finite state automorphisms of regular rooted trees constructed in [6] to represent groups \(GL(n,\mathbb{Z})\).  The number of states of automorphisms that correspond to elementary matrices is computed. Using the representation of \(GL(2,\mathbb{Z})\) over an alphabet of size \(4\)  a finite state  representation of the free group of rank \(2\) over binary alphabet is constructed.
first_indexed 2026-02-08T07:58:32Z
format Article
id admjournalluguniveduua-article-2158
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:32Z
publishDate 2023
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-21582023-12-11T16:21:07Z On a finite state representation of \(GL(n,\mathbb{Z})\) Oliynyk, A. Prokhorchuk, V. automorphism of rooted tree, finite state automorphism, integer matrix, free group 20E08, 20E22, 20E26 It is examined finite state automorphisms of regular rooted trees constructed in [6] to represent groups \(GL(n,\mathbb{Z})\).  The number of states of automorphisms that correspond to elementary matrices is computed. Using the representation of \(GL(2,\mathbb{Z})\) over an alphabet of size \(4\)  a finite state  representation of the free group of rank \(2\) over binary alphabet is constructed. Lugansk National Taras Shevchenko University 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2158 10.12958/adm2158 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2158/pdf_1 Copyright (c) 2023 Algebra and Discrete Mathematics
spellingShingle automorphism of rooted tree
finite state automorphism
integer matrix
free group
20E08
20E22
20E26
Oliynyk, A.
Prokhorchuk, V.
On a finite state representation of \(GL(n,\mathbb{Z})\)
title On a finite state representation of \(GL(n,\mathbb{Z})\)
title_full On a finite state representation of \(GL(n,\mathbb{Z})\)
title_fullStr On a finite state representation of \(GL(n,\mathbb{Z})\)
title_full_unstemmed On a finite state representation of \(GL(n,\mathbb{Z})\)
title_short On a finite state representation of \(GL(n,\mathbb{Z})\)
title_sort on a finite state representation of \(gl(n,\mathbb{z})\)
topic automorphism of rooted tree
finite state automorphism
integer matrix
free group
20E08
20E22
20E26
topic_facet automorphism of rooted tree
finite state automorphism
integer matrix
free group
20E08
20E22
20E26
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2158
work_keys_str_mv AT oliynyka onafinitestaterepresentationofglnmathbbz
AT prokhorchukv onafinitestaterepresentationofglnmathbbz