Frieze matrices and friezes with coefficients

Frieze patterns are combinatorial objects that are deeply related to cluster theory. Determinants of frieze patterns arise from triangular regions of the frieze, and they have been considered in previous works by Broline-Crowe-Isaacs, and by Baur-Marsh. In this article, we introduce a new type of ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
1. Verfasser: Maldonado, J. P.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2024
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2184
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2184
record_format ojs
spelling admjournalluguniveduua-article-21842024-02-14T18:40:04Z Frieze matrices and friezes with coefficients Maldonado, J. P. frieze pattern, cluster algebra, determinant 05B20; 13F60 Frieze patterns are combinatorial objects that are deeply related to cluster theory. Determinants of frieze patterns arise from triangular regions of the frieze, and they have been considered in previous works by Broline-Crowe-Isaacs, and by Baur-Marsh. In this article, we introduce a new type of matrix for any infinite frieze pattern. This approach allows us to give a new proof of the frieze determinant result given by Baur-Marsh. Lugansk National Taras Shevchenko University Karin Baur, Ana García Elsener, Leeds University, CONICET. 2024-02-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2184 10.12958/adm2184 Algebra and Discrete Mathematics; Vol 36, No 2 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2184/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2184/1135 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2184/1136 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2184/1137 Copyright (c) 2024 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2024-02-14T18:40:04Z
collection OJS
language English
topic frieze pattern
cluster algebra
determinant
05B20
13F60
spellingShingle frieze pattern
cluster algebra
determinant
05B20
13F60
Maldonado, J. P.
Frieze matrices and friezes with coefficients
topic_facet frieze pattern
cluster algebra
determinant
05B20
13F60
format Article
author Maldonado, J. P.
author_facet Maldonado, J. P.
author_sort Maldonado, J. P.
title Frieze matrices and friezes with coefficients
title_short Frieze matrices and friezes with coefficients
title_full Frieze matrices and friezes with coefficients
title_fullStr Frieze matrices and friezes with coefficients
title_full_unstemmed Frieze matrices and friezes with coefficients
title_sort frieze matrices and friezes with coefficients
description Frieze patterns are combinatorial objects that are deeply related to cluster theory. Determinants of frieze patterns arise from triangular regions of the frieze, and they have been considered in previous works by Broline-Crowe-Isaacs, and by Baur-Marsh. In this article, we introduce a new type of matrix for any infinite frieze pattern. This approach allows us to give a new proof of the frieze determinant result given by Baur-Marsh.
publisher Lugansk National Taras Shevchenko University
publishDate 2024
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2184
work_keys_str_mv AT maldonadojp friezematricesandfriezeswithcoefficients
first_indexed 2025-12-02T15:50:08Z
last_indexed 2025-12-02T15:50:08Z
_version_ 1850412219827748864