On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algeb...
Saved in:
| Date: | 2024 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2024
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-2227 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-22272024-06-27T08:42:43Z On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. Leibniz algebra, non-nilpotent Leibniz algebra, dimension, derivation 17A32, 17A60, 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algebras of low dimensions. Lugansk National Taras Shevchenko University 2024-06-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227 10.12958/adm2227 Algebra and Discrete Mathematics; Vol 37, No 2 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2227/1159 Copyright (c) 2024 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2024-06-27T08:42:43Z |
| collection |
OJS |
| language |
English |
| topic |
Leibniz algebra non-nilpotent Leibniz algebra dimension derivation 17A32 17A60 17A99 |
| spellingShingle |
Leibniz algebra non-nilpotent Leibniz algebra dimension derivation 17A32 17A60 17A99 Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
| topic_facet |
Leibniz algebra non-nilpotent Leibniz algebra dimension derivation 17A32 17A60 17A99 |
| format |
Article |
| author |
Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. |
| author_facet |
Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. |
| author_sort |
Kurdachenko, Leonid A. |
| title |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
| title_short |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
| title_full |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
| title_fullStr |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
| title_full_unstemmed |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
| title_sort |
on the structure of the algebras of derivations of some non-nilpotent leibniz algebras |
| description |
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algebras of low dimensions. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2024 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227 |
| work_keys_str_mv |
AT kurdachenkoleonida onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras AT semkomykolam onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras AT subbotinigorya onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras |
| first_indexed |
2025-12-02T15:42:34Z |
| last_indexed |
2025-12-02T15:42:34Z |
| _version_ |
1850411743537266689 |