Certain verbal congruences on the free trioid

Loday and Ronco introduced the notion of a trioid as an algebra defined on a set with three binary associative operations. Every trialgebra is a linear analog of a trioid. Our paper is devoted to the study of verbal congruences on trioids. We characterize the least abelian dimonoid congruences, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
1. Verfasser: Zhuchok, Anatolii V.
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2024
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2274
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543345711513600
author Zhuchok, Anatolii V.
author_facet Zhuchok, Anatolii V.
author_sort Zhuchok, Anatolii V.
baseUrl_str
collection OJS
datestamp_date 2024-06-27T08:42:43Z
description Loday and Ronco introduced the notion of a trioid as an algebra defined on a set with three binary associative operations. Every trialgebra is a linear analog of a trioid. Our paper is devoted to the study of verbal congruences on trioids. We characterize the least abelian dimonoid congruences, the least \(n\)-nilpotent dimonoid congruences, the least left (right) \(n\)-trinilpotent dimonoid congruence, the least \(n\)-nilpotent semigroup congruence and the least left (right) \(n\)-nilpotent semigroup congruence on the free trioid. The obtained results can be useful in trialgebra theory.
first_indexed 2026-02-08T08:01:45Z
format Article
id admjournalluguniveduua-article-2274
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:01:45Z
publishDate 2024
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-22742024-06-27T08:42:43Z Certain verbal congruences on the free trioid Zhuchok, Anatolii V. trioid, free trioid, dimonoid, semigroup, congruence 08B20, 20M10, 20M50, 17A30, 17D99 Loday and Ronco introduced the notion of a trioid as an algebra defined on a set with three binary associative operations. Every trialgebra is a linear analog of a trioid. Our paper is devoted to the study of verbal congruences on trioids. We characterize the least abelian dimonoid congruences, the least \(n\)-nilpotent dimonoid congruences, the least left (right) \(n\)-trinilpotent dimonoid congruence, the least \(n\)-nilpotent semigroup congruence and the least left (right) \(n\)-nilpotent semigroup congruence on the free trioid. The obtained results can be useful in trialgebra theory. Lugansk National Taras Shevchenko University 2024-06-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2274 10.12958/adm2274 Algebra and Discrete Mathematics; Vol 37, No 2 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2274/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2274/1201 Copyright (c) 2024 Algebra and Discrete Mathematics
spellingShingle trioid
free trioid
dimonoid
semigroup
congruence
08B20
20M10
20M50
17A30
17D99
Zhuchok, Anatolii V.
Certain verbal congruences on the free trioid
title Certain verbal congruences on the free trioid
title_full Certain verbal congruences on the free trioid
title_fullStr Certain verbal congruences on the free trioid
title_full_unstemmed Certain verbal congruences on the free trioid
title_short Certain verbal congruences on the free trioid
title_sort certain verbal congruences on the free trioid
topic trioid
free trioid
dimonoid
semigroup
congruence
08B20
20M10
20M50
17A30
17D99
topic_facet trioid
free trioid
dimonoid
semigroup
congruence
08B20
20M10
20M50
17A30
17D99
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2274
work_keys_str_mv AT zhuchokanatoliiv certainverbalcongruencesonthefreetrioid