Dissemination of zeros of generalized derivative of a polynomial via matrix approach

A polynomial of degree \(n\) is denoted by \(p(z):=\sum\limits_{j=0}^{n} a_{j}z^{j}\). Then, by classical Cauchy's result, $$|z|\le 1+ \max\bigg(\left|\frac {a_{n-1}}{a_{n}}\right|, \left|\frac {a_{n-2}}{a_{n}}\right|, \left|\frac {a_{n-3}}{a_{n}}\right|,...,\left|\frac {a_{0}}{a_{n}}\right|\bi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Mohammad, Ruqia, Purohit, Mridula, Liman, Abdul
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2297
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:A polynomial of degree \(n\) is denoted by \(p(z):=\sum\limits_{j=0}^{n} a_{j}z^{j}\). Then, by classical Cauchy's result, $$|z|\le 1+ \max\bigg(\left|\frac {a_{n-1}}{a_{n}}\right|, \left|\frac {a_{n-2}}{a_{n}}\right|, \left|\frac {a_{n-3}}{a_{n}}\right|,...,\left|\frac {a_{0}}{a_{n}}\right|\bigg)$$ contains all of \(p(z)\)'s zeros. In order to improve on classical Cauchy finding, we will extend such results in this study to the polar derivative of an algebraic polynomial using matrix technique.