Dissemination of zeros of generalized derivative of a polynomial via matrix approach

A polynomial of degree \(n\) is denoted by \(p(z):=\sum\limits_{j=0}^{n} a_{j}z^{j}\). Then, by classical Cauchy's result, $$|z|\le 1+ \max\bigg(\left|\frac {a_{n-1}}{a_{n}}\right|, \left|\frac {a_{n-2}}{a_{n}}\right|, \left|\frac {a_{n-3}}{a_{n}}\right|,...,\left|\frac {a_{0}}{a_{n}}\right|\bi...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Mohammad, Ruqia, Purohit, Mridula, Liman, Abdul
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2025
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2297
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2297
record_format ojs
spelling admjournalluguniveduua-article-22972025-10-27T20:24:52Z Dissemination of zeros of generalized derivative of a polynomial via matrix approach Mohammad, Ruqia Purohit, Mridula Liman, Abdul matrix, eigen vaues, polynomial, zero, polar derivative 30C10, 26D07 A polynomial of degree \(n\) is denoted by \(p(z):=\sum\limits_{j=0}^{n} a_{j}z^{j}\). Then, by classical Cauchy's result, $$|z|\le 1+ \max\bigg(\left|\frac {a_{n-1}}{a_{n}}\right|, \left|\frac {a_{n-2}}{a_{n}}\right|, \left|\frac {a_{n-3}}{a_{n}}\right|,...,\left|\frac {a_{0}}{a_{n}}\right|\bigg)$$ contains all of \(p(z)\)'s zeros. In order to improve on classical Cauchy finding, we will extend such results in this study to the polar derivative of an algebraic polynomial using matrix technique. Lugansk National Taras Shevchenko University 2025-10-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2297 10.12958/adm2297 Algebra and Discrete Mathematics; Vol 40, No 1 (2025) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2297/pdf Copyright (c) 2025 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2025-10-27T20:24:52Z
collection OJS
language English
topic matrix
eigen vaues
polynomial
zero
polar derivative
30C10
26D07
spellingShingle matrix
eigen vaues
polynomial
zero
polar derivative
30C10
26D07
Mohammad, Ruqia
Purohit, Mridula
Liman, Abdul
Dissemination of zeros of generalized derivative of a polynomial via matrix approach
topic_facet matrix
eigen vaues
polynomial
zero
polar derivative
30C10
26D07
format Article
author Mohammad, Ruqia
Purohit, Mridula
Liman, Abdul
author_facet Mohammad, Ruqia
Purohit, Mridula
Liman, Abdul
author_sort Mohammad, Ruqia
title Dissemination of zeros of generalized derivative of a polynomial via matrix approach
title_short Dissemination of zeros of generalized derivative of a polynomial via matrix approach
title_full Dissemination of zeros of generalized derivative of a polynomial via matrix approach
title_fullStr Dissemination of zeros of generalized derivative of a polynomial via matrix approach
title_full_unstemmed Dissemination of zeros of generalized derivative of a polynomial via matrix approach
title_sort dissemination of zeros of generalized derivative of a polynomial via matrix approach
description A polynomial of degree \(n\) is denoted by \(p(z):=\sum\limits_{j=0}^{n} a_{j}z^{j}\). Then, by classical Cauchy's result, $$|z|\le 1+ \max\bigg(\left|\frac {a_{n-1}}{a_{n}}\right|, \left|\frac {a_{n-2}}{a_{n}}\right|, \left|\frac {a_{n-3}}{a_{n}}\right|,...,\left|\frac {a_{0}}{a_{n}}\right|\bigg)$$ contains all of \(p(z)\)'s zeros. In order to improve on classical Cauchy finding, we will extend such results in this study to the polar derivative of an algebraic polynomial using matrix technique.
publisher Lugansk National Taras Shevchenko University
publishDate 2025
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2297
work_keys_str_mv AT mohammadruqia disseminationofzerosofgeneralizedderivativeofapolynomialviamatrixapproach
AT purohitmridula disseminationofzerosofgeneralizedderivativeofapolynomialviamatrixapproach
AT limanabdul disseminationofzerosofgeneralizedderivativeofapolynomialviamatrixapproach
first_indexed 2025-12-02T15:46:03Z
last_indexed 2025-12-02T15:46:03Z
_version_ 1850423563476008960