On the algebra of derivations of some Leibniz algebras

Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz al...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Kurdachenko, Leonid A., Semko, Mykola M., Subbotin, Igor Ya.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2024
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543144972124160
author Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
author_facet Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
author_sort Kurdachenko, Leonid A.
baseUrl_str
collection OJS
datestamp_date 2024-09-23T09:29:11Z
description Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz algebras of low dimensions.
first_indexed 2026-02-08T07:57:49Z
format Article
id admjournalluguniveduua-article-2316
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:57:49Z
publishDate 2024
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-23162024-09-23T09:29:11Z On the algebra of derivations of some Leibniz algebras Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. Leibniz algebra, Lie algebra, derivation, endomorphism 17A32; 17A60; 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz algebras of low dimensions. Lugansk National Taras Shevchenko University 2024-09-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316 10.12958/adm2316 Algebra and Discrete Mathematics; Vol 38, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2316/1244 Copyright (c) 2024 Algebra and Discrete Mathematics
spellingShingle Leibniz algebra
Lie algebra
derivation
endomorphism
17A32
17A60
17A99
Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
On the algebra of derivations of some Leibniz algebras
title On the algebra of derivations of some Leibniz algebras
title_full On the algebra of derivations of some Leibniz algebras
title_fullStr On the algebra of derivations of some Leibniz algebras
title_full_unstemmed On the algebra of derivations of some Leibniz algebras
title_short On the algebra of derivations of some Leibniz algebras
title_sort on the algebra of derivations of some leibniz algebras
topic Leibniz algebra
Lie algebra
derivation
endomorphism
17A32
17A60
17A99
topic_facet Leibniz algebra
Lie algebra
derivation
endomorphism
17A32
17A60
17A99
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316
work_keys_str_mv AT kurdachenkoleonida onthealgebraofderivationsofsomeleibnizalgebras
AT semkomykolam onthealgebraofderivationsofsomeleibnizalgebras
AT subbotinigorya onthealgebraofderivationsofsomeleibnizalgebras