The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs

Base (minimal generating set) of the Sylow 2-subgroup of \(S_{2^n}\) is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup \(P_n(2)\) of \(S_{2^n}\)  acts by conjugation on the set of all b...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Pawlik, Bartłomiej Tadeusz
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/233
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Base (minimal generating set) of the Sylow 2-subgroup of \(S_{2^n}\) is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup \(P_n(2)\) of \(S_{2^n}\)  acts by conjugation on the set of all bases. In presented paper the~stabilizer of the set of all diagonal bases in \(S_n(2)\) is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly \(2^{n-1}\) diagonal bases and \(2^{2^n-2n}\) bases at all. Recursive construction of Cayley graphs of \(P_n(2)\) on diagonal bases (\(n\geq2\)) is proposed.