On the semigroup of monoid endomorphisms of the semigroup \(\mathscr{C}_{+}(a,b)\)
Let \(\mathscr{C}_{+}(a,b)\) be the submonoid of the bicyclic monoid which is studied in [8]. We describe monoid endomorphisms of the semigroup \(\mathscr{C}_{+}(a,b)\) which are generated by the family of all congruences of the bicyclic monoid and all injective monoid endomorphisms of \(\mathscr{C}...
Gespeichert in:
| Datum: | 2025 |
|---|---|
| Hauptverfasser: | Gutik, Oleg, Penza, Sher-Ali |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2025
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2333 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
On the semigroup of monoid endomorphisms of the semigroup \(\mathscr{C}_{+}(a,b)\)
von: Gutik, Oleg, et al.
Veröffentlicht: (2025) -
The structure of automorphism groups of semigroup inflations
von: Kudryavtseva, Ganna
Veröffentlicht: (2018) -
The monoid of endomorphisms of disconnected hypergraphs
von: Zhuchok, Yuriy V.
Veröffentlicht: (2018) -
On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
von: Gutik, O., et al.
Veröffentlicht: (2023) -
On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
von: Gutik, O., et al.
Veröffentlicht: (2023)