Fundamental theorem of \((A,\mathcal G,H)\)-comodules
Let \(k\) be a field, \(H\) a Hopf algebra with a bijective antipode, \(\mathcal G\) an \(H\)-comodule Lie algebra and \(A\) a commutative \(({\mathcal G},H)\)-comodule algebra. We assume that there is an \(H\)-colinear algebra map from \(H\) to \(A^{\mathcal G}\). We generalize the Fundamental Theo...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автор: | Guédénon, Thomas |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2025
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsСхожі ресурси
-
Fundamental theorem of \((A,\mathcal G,H)\)-comodules
за авторством: Guédénon, Thomas
Опубліковано: (2025) -
\((\mathcal{T}_{\textsf {Lie}})\)-Leibniz algebras and related properties
за авторством: Tcheka, C., та інші
Опубліковано: (2024) -
\((\mathcal{T}_{\textsf {Lie}})\)-Leibniz algebras and related properties
за авторством: Tcheka, C., та інші
Опубліковано: (2024) -
A note on simplicity of contact Lie algebras over \(\operatorname{GF}(2)\)
за авторством: Zargeh, Chia
Опубліковано: (2018) -
On the algebra of derivations of some Leibniz algebras
за авторством: Kurdachenko, Leonid A., та інші
Опубліковано: (2024)