Rings of differential operators on singular generalized multi-cusp algebras

The aim of the paper is to study the ring of differential operators \(\mathcal{D}(A(m))\) on the generalized multi-cusp algebra \(A(m)\) where \(m\in \mathbb{N}^n\) (of Krull dimension \(n\)). The algebra \(A(m)\) is singular apart from the single case when \(m=(1, \ldots , 1)\). In this case, the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Bavula, Volodymyr V., Hakami, Khalil
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2025
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543061166784512
author Bavula, Volodymyr V.
Hakami, Khalil
author_facet Bavula, Volodymyr V.
Hakami, Khalil
author_sort Bavula, Volodymyr V.
baseUrl_str
collection OJS
datestamp_date 2025-01-19T19:44:59Z
description The aim of the paper is to study the ring of differential operators \(\mathcal{D}(A(m))\) on the generalized multi-cusp algebra \(A(m)\) where \(m\in \mathbb{N}^n\) (of Krull dimension \(n\)). The algebra \(A(m)\) is singular apart from the single case when \(m=(1, \ldots , 1)\). In this case, the algebra \(A(m)\) is a polynomial algebra in \(n\) variables. So, the \(n\)'th Weyl algebra \(A_n=\mathcal{D}(A(1, \ldots , 1))\) is a member of the family of algebras \(\mathcal{D}(A(m))\). We prove that the algebra \(\mathcal{D}(A(m))\) is a central, simple, \(\mathbb{Z}^n\)-graded, finitely generated Noetherian domain of Gelfand-Kirillov dimension \(2n\). Explicit finite sets of generators and defining relations is given for the algebra \(\mathcal{D}(A(m))\). We prove that the Krull dimension and the global dimension of the algebra \(\mathcal{D}(A(m))\) is \(n\). An analogue of the Inequality of Bernstein is proven. In the case when \(n = 1\), simple \(\mathcal{D}(A(m))\)-modules are classified.
first_indexed 2025-12-02T15:50:10Z
format Article
id admjournalluguniveduua-article-2350
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:50:10Z
publishDate 2025
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-23502025-01-19T19:44:59Z Rings of differential operators on singular generalized multi-cusp algebras Bavula, Volodymyr V. Hakami, Khalil the ring of differential operators, the generalized multicusp algebra, the generalized Weyl algebra, the global dimension, the Krull dimension, the Gelfand-Kirillov dimension, simple module, the projective dimension, orbit, the projective resolution The aim of the paper is to study the ring of differential operators \(\mathcal{D}(A(m))\) on the generalized multi-cusp algebra \(A(m)\) where \(m\in \mathbb{N}^n\) (of Krull dimension \(n\)). The algebra \(A(m)\) is singular apart from the single case when \(m=(1, \ldots , 1)\). In this case, the algebra \(A(m)\) is a polynomial algebra in \(n\) variables. So, the \(n\)'th Weyl algebra \(A_n=\mathcal{D}(A(1, \ldots , 1))\) is a member of the family of algebras \(\mathcal{D}(A(m))\). We prove that the algebra \(\mathcal{D}(A(m))\) is a central, simple, \(\mathbb{Z}^n\)-graded, finitely generated Noetherian domain of Gelfand-Kirillov dimension \(2n\). Explicit finite sets of generators and defining relations is given for the algebra \(\mathcal{D}(A(m))\). We prove that the Krull dimension and the global dimension of the algebra \(\mathcal{D}(A(m))\) is \(n\). An analogue of the Inequality of Bernstein is proven. In the case when \(n = 1\), simple \(\mathcal{D}(A(m))\)-modules are classified. Lugansk National Taras Shevchenko University 2025-01-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350 10.12958/adm2350 Algebra and Discrete Mathematics; Vol 38, No 2 (2024): A special issue 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2350/1262 Copyright (c) 2025 Algebra and Discrete Mathematics
spellingShingle the ring of differential operators
the generalized multicusp algebra
the generalized Weyl algebra
the global dimension
the Krull dimension
the Gelfand-Kirillov dimension
simple module
the projective dimension
orbit
the projective resolution

Bavula, Volodymyr V.
Hakami, Khalil
Rings of differential operators on singular generalized multi-cusp algebras
title Rings of differential operators on singular generalized multi-cusp algebras
title_full Rings of differential operators on singular generalized multi-cusp algebras
title_fullStr Rings of differential operators on singular generalized multi-cusp algebras
title_full_unstemmed Rings of differential operators on singular generalized multi-cusp algebras
title_short Rings of differential operators on singular generalized multi-cusp algebras
title_sort rings of differential operators on singular generalized multi-cusp algebras
topic the ring of differential operators
the generalized multicusp algebra
the generalized Weyl algebra
the global dimension
the Krull dimension
the Gelfand-Kirillov dimension
simple module
the projective dimension
orbit
the projective resolution

topic_facet the ring of differential operators
the generalized multicusp algebra
the generalized Weyl algebra
the global dimension
the Krull dimension
the Gelfand-Kirillov dimension
simple module
the projective dimension
orbit
the projective resolution

url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350
work_keys_str_mv AT bavulavolodymyrv ringsofdifferentialoperatorsonsingulargeneralizedmulticuspalgebras
AT hakamikhalil ringsofdifferentialoperatorsonsingulargeneralizedmulticuspalgebras