Rings of differential operators on singular generalized multi-cusp algebras

The aim of the paper is to study the ring of differential operators \(\mathcal{D}(A(m))\) on the generalized multi-cusp algebra \(A(m)\) where \(m\in \mathbb{N}^n\) (of Krull dimension \(n\)). The algebra \(A(m)\) is singular apart from the single case when \(m=(1, \ldots , 1)\). In this case, the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Bavula, Volodymyr V., Hakami, Khalil
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2025
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2350
record_format ojs
spelling admjournalluguniveduua-article-23502025-01-19T19:44:59Z Rings of differential operators on singular generalized multi-cusp algebras Bavula, Volodymyr V. Hakami, Khalil the ring of differential operators, the generalized multicusp algebra, the generalized Weyl algebra, the global dimension, the Krull dimension, the Gelfand-Kirillov dimension, simple module, the projective dimension, orbit, the projective resolution The aim of the paper is to study the ring of differential operators \(\mathcal{D}(A(m))\) on the generalized multi-cusp algebra \(A(m)\) where \(m\in \mathbb{N}^n\) (of Krull dimension \(n\)). The algebra \(A(m)\) is singular apart from the single case when \(m=(1, \ldots , 1)\). In this case, the algebra \(A(m)\) is a polynomial algebra in \(n\) variables. So, the \(n\)'th Weyl algebra \(A_n=\mathcal{D}(A(1, \ldots , 1))\) is a member of the family of algebras \(\mathcal{D}(A(m))\). We prove that the algebra \(\mathcal{D}(A(m))\) is a central, simple, \(\mathbb{Z}^n\)-graded, finitely generated Noetherian domain of Gelfand-Kirillov dimension \(2n\). Explicit finite sets of generators and defining relations is given for the algebra \(\mathcal{D}(A(m))\). We prove that the Krull dimension and the global dimension of the algebra \(\mathcal{D}(A(m))\) is \(n\). An analogue of the Inequality of Bernstein is proven. In the case when \(n = 1\), simple \(\mathcal{D}(A(m))\)-modules are classified. Lugansk National Taras Shevchenko University 2025-01-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350 10.12958/adm2350 Algebra and Discrete Mathematics; Vol 38, No 2 (2024): A special issue 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2350/1262 Copyright (c) 2025 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2025-01-19T19:44:59Z
collection OJS
language English
topic the ring of differential operators
the generalized multicusp algebra
the generalized Weyl algebra
the global dimension
the Krull dimension
the Gelfand-Kirillov dimension
simple module
the projective dimension
orbit
the projective resolution

spellingShingle the ring of differential operators
the generalized multicusp algebra
the generalized Weyl algebra
the global dimension
the Krull dimension
the Gelfand-Kirillov dimension
simple module
the projective dimension
orbit
the projective resolution

Bavula, Volodymyr V.
Hakami, Khalil
Rings of differential operators on singular generalized multi-cusp algebras
topic_facet the ring of differential operators
the generalized multicusp algebra
the generalized Weyl algebra
the global dimension
the Krull dimension
the Gelfand-Kirillov dimension
simple module
the projective dimension
orbit
the projective resolution

format Article
author Bavula, Volodymyr V.
Hakami, Khalil
author_facet Bavula, Volodymyr V.
Hakami, Khalil
author_sort Bavula, Volodymyr V.
title Rings of differential operators on singular generalized multi-cusp algebras
title_short Rings of differential operators on singular generalized multi-cusp algebras
title_full Rings of differential operators on singular generalized multi-cusp algebras
title_fullStr Rings of differential operators on singular generalized multi-cusp algebras
title_full_unstemmed Rings of differential operators on singular generalized multi-cusp algebras
title_sort rings of differential operators on singular generalized multi-cusp algebras
description The aim of the paper is to study the ring of differential operators \(\mathcal{D}(A(m))\) on the generalized multi-cusp algebra \(A(m)\) where \(m\in \mathbb{N}^n\) (of Krull dimension \(n\)). The algebra \(A(m)\) is singular apart from the single case when \(m=(1, \ldots , 1)\). In this case, the algebra \(A(m)\) is a polynomial algebra in \(n\) variables. So, the \(n\)'th Weyl algebra \(A_n=\mathcal{D}(A(1, \ldots , 1))\) is a member of the family of algebras \(\mathcal{D}(A(m))\). We prove that the algebra \(\mathcal{D}(A(m))\) is a central, simple, \(\mathbb{Z}^n\)-graded, finitely generated Noetherian domain of Gelfand-Kirillov dimension \(2n\). Explicit finite sets of generators and defining relations is given for the algebra \(\mathcal{D}(A(m))\). We prove that the Krull dimension and the global dimension of the algebra \(\mathcal{D}(A(m))\) is \(n\). An analogue of the Inequality of Bernstein is proven. In the case when \(n = 1\), simple \(\mathcal{D}(A(m))\)-modules are classified.
publisher Lugansk National Taras Shevchenko University
publishDate 2025
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350
work_keys_str_mv AT bavulavolodymyrv ringsofdifferentialoperatorsonsingulargeneralizedmulticuspalgebras
AT hakamikhalil ringsofdifferentialoperatorsonsingulargeneralizedmulticuspalgebras
first_indexed 2025-12-02T15:50:10Z
last_indexed 2025-12-02T15:50:10Z
_version_ 1850412221801168896