Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form

Let \(G\) be a finite undirected connected graph. The minimum number of edges that must be removed to make the graph acyclic is called the circuit rank of \(G\). If such edges are fixed, the graph that remains is called a spanning tree of \(G\). In this paper we study scanning trees of the Hasse dia...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Bondarenko, Vitaliy M., Styopochkina, Maryna V.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543252602159104
author Bondarenko, Vitaliy M.
Styopochkina, Maryna V.
author_facet Bondarenko, Vitaliy M.
Styopochkina, Maryna V.
author_sort Bondarenko, Vitaliy M.
baseUrl_str
collection OJS
datestamp_date 2025-01-19T19:44:59Z
description Let \(G\) be a finite undirected connected graph. The minimum number of edges that must be removed to make the graph acyclic is called the circuit rank of \(G\). If such edges are fixed, the graph that remains is called a spanning tree of \(G\). In this paper we study scanning trees of the Hasse diagrams of connected posets with positive Tits quadratic form.
first_indexed 2025-12-02T15:31:13Z
format Article
id admjournalluguniveduua-article-2368
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:31:13Z
publishDate 2025
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-23682025-01-19T19:44:59Z Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form Bondarenko, Vitaliy M. Styopochkina, Maryna V. Tits quadratic form, non-serial positive poset, Hasse diagram, circuit rank, scanning tree, Dynkin diagram Let \(G\) be a finite undirected connected graph. The minimum number of edges that must be removed to make the graph acyclic is called the circuit rank of \(G\). If such edges are fixed, the graph that remains is called a spanning tree of \(G\). In this paper we study scanning trees of the Hasse diagrams of connected posets with positive Tits quadratic form. Lugansk National Taras Shevchenko University 2025-01-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368 10.12958/adm2368 Algebra and Discrete Mathematics; Vol 38, No 2 (2024): A special issue 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2368/1278 Copyright (c) 2025 Algebra and Discrete Mathematics
spellingShingle Tits quadratic form
non-serial positive poset
Hasse diagram
circuit rank
scanning tree
Dynkin diagram

Bondarenko, Vitaliy M.
Styopochkina, Maryna V.
Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form
title Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form
title_full Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form
title_fullStr Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form
title_full_unstemmed Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form
title_short Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form
title_sort existence of dynkin scanning trees for non-serial posets with positive tits quadratic form
topic Tits quadratic form
non-serial positive poset
Hasse diagram
circuit rank
scanning tree
Dynkin diagram

topic_facet Tits quadratic form
non-serial positive poset
Hasse diagram
circuit rank
scanning tree
Dynkin diagram

url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368
work_keys_str_mv AT bondarenkovitaliym existenceofdynkinscanningtreesfornonserialposetswithpositivetitsquadraticform
AT styopochkinamarynav existenceofdynkinscanningtreesfornonserialposetswithpositivetitsquadraticform