The decreasing and monotone injective partial monoid on a finite chain

In this paper, we consider the monoid \(\mathcal{DORI}_{n}\) consisting of all monotone and order-decreasing partial injective transformations, \(I(n, p) = \{ \alpha \in \mathcal{DORI}_{n} : |\) Im \(\alpha| \leq p \}\) the two-sided ideal of \(\mathcal{DORI}_{n}\), and \({RQ}_{p}(n)\) the Rees quot...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2026
Автори: Zubairu, Muhammad Mansur, Umar, Abdullahi, Al-Kharousi, Fatma Salim
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2026
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2388
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543147766579200
author Zubairu, Muhammad Mansur
Umar, Abdullahi
Al-Kharousi, Fatma Salim
author_facet Zubairu, Muhammad Mansur
Umar, Abdullahi
Al-Kharousi, Fatma Salim
author_sort Zubairu, Muhammad Mansur
baseUrl_str
collection OJS
datestamp_date 2026-01-11T10:11:21Z
description In this paper, we consider the monoid \(\mathcal{DORI}_{n}\) consisting of all monotone and order-decreasing partial injective transformations, \(I(n, p) = \{ \alpha \in \mathcal{DORI}_{n} : |\) Im \(\alpha| \leq p \}\) the two-sided ideal of \(\mathcal{DORI}_{n}\), and \({RQ}_{p}(n)\) the Rees quotient of \(I(n, p)\) on a chain with \(n\) elements. We calculate the cardinality of \(\mathcal{DORI}_{n}\), characterize the Green's relations and their starred analogue for any structure \(S\in\{\mathcal{DORI}_{n}, I(n, p), {RQ}_{p}(n)\}\). We demonstrate that for any structure \(S\) among \(\{\mathcal{DORI}_{n}, I(n, p), {RQ}_{p}(n)\}\), the structure is abundant for all values of \(n\); specifically, \(\mathcal{DORI}_{n}\) is shown to be an ample monoid, and compute the rank of the Rees quotient \({RQ}_{p}(n)\) and the two-sided ideal \(I(n, p)\); as a special case, we obtain the rank of the monoid \(\mathcal{DORI}_{n}\) to be \(3n - 2\). Finally, we characterize all the maximal subsemigroups of the structure \(S\) among \(\{\mathcal{DORI}_{n}, I(n, p), {RQ}_{p}(n)\}\).
first_indexed 2026-02-08T07:58:36Z
format Article
id admjournalluguniveduua-article-2388
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:36Z
publishDate 2026
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-23882026-01-11T10:11:21Z The decreasing and monotone injective partial monoid on a finite chain Zubairu, Muhammad Mansur Umar, Abdullahi Al-Kharousi, Fatma Salim monotone maps, order decreasing, ample monoid, rank properties 20m20 In this paper, we consider the monoid \(\mathcal{DORI}_{n}\) consisting of all monotone and order-decreasing partial injective transformations, \(I(n, p) = \{ \alpha \in \mathcal{DORI}_{n} : |\) Im \(\alpha| \leq p \}\) the two-sided ideal of \(\mathcal{DORI}_{n}\), and \({RQ}_{p}(n)\) the Rees quotient of \(I(n, p)\) on a chain with \(n\) elements. We calculate the cardinality of \(\mathcal{DORI}_{n}\), characterize the Green's relations and their starred analogue for any structure \(S\in\{\mathcal{DORI}_{n}, I(n, p), {RQ}_{p}(n)\}\). We demonstrate that for any structure \(S\) among \(\{\mathcal{DORI}_{n}, I(n, p), {RQ}_{p}(n)\}\), the structure is abundant for all values of \(n\); specifically, \(\mathcal{DORI}_{n}\) is shown to be an ample monoid, and compute the rank of the Rees quotient \({RQ}_{p}(n)\) and the two-sided ideal \(I(n, p)\); as a special case, we obtain the rank of the monoid \(\mathcal{DORI}_{n}\) to be \(3n - 2\). Finally, we characterize all the maximal subsemigroups of the structure \(S\) among \(\{\mathcal{DORI}_{n}, I(n, p), {RQ}_{p}(n)\}\). Lugansk National Taras Shevchenko University TETFUND Nigeria 2026-01-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2388 10.12958/adm2388 Algebra and Discrete Mathematics; Vol 40, No 2 (2025) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2388/pdf Copyright (c) 2026 Algebra and Discrete Mathematics
spellingShingle monotone maps
order decreasing
ample monoid
rank properties
20m20
Zubairu, Muhammad Mansur
Umar, Abdullahi
Al-Kharousi, Fatma Salim
The decreasing and monotone injective partial monoid on a finite chain
title The decreasing and monotone injective partial monoid on a finite chain
title_full The decreasing and monotone injective partial monoid on a finite chain
title_fullStr The decreasing and monotone injective partial monoid on a finite chain
title_full_unstemmed The decreasing and monotone injective partial monoid on a finite chain
title_short The decreasing and monotone injective partial monoid on a finite chain
title_sort decreasing and monotone injective partial monoid on a finite chain
topic monotone maps
order decreasing
ample monoid
rank properties
20m20
topic_facet monotone maps
order decreasing
ample monoid
rank properties
20m20
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2388
work_keys_str_mv AT zubairumuhammadmansur thedecreasingandmonotoneinjectivepartialmonoidonafinitechain
AT umarabdullahi thedecreasingandmonotoneinjectivepartialmonoidonafinitechain
AT alkharousifatmasalim thedecreasingandmonotoneinjectivepartialmonoidonafinitechain
AT zubairumuhammadmansur decreasingandmonotoneinjectivepartialmonoidonafinitechain
AT umarabdullahi decreasingandmonotoneinjectivepartialmonoidonafinitechain
AT alkharousifatmasalim decreasingandmonotoneinjectivepartialmonoidonafinitechain