A two-symbol system of encoding and some of its applications

The article is devoted to a two-symbol system of encoding for real numbers with two bases of different signs \(g_0 \in (0;\frac{1}{2}]\) and \(g_1\equiv g_0-1\), as well as its applications in metric number theory and the metric theory of functions. We prove that any natural number \(a\) can be repr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Pratsiovytyi, Mykola, Lysenko, Iryna, Ratushniak, Sofiia
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2395
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2395
record_format ojs
spelling admjournalluguniveduua-article-23952025-10-27T20:24:52Z A two-symbol system of encoding and some of its applications Pratsiovytyi, Mykola Lysenko, Iryna Ratushniak, Sofiia two-symbol system of encoding (representation) of numbers, \(G_2\)-representation of numbers, cylindrical set (cylinder), left and right shift operator, tail set, group of continuous transformations of real interval preserving tails 11H71, 26A46, 93B17 The article is devoted to a two-symbol system of encoding for real numbers with two bases of different signs \(g_0 \in (0;\frac{1}{2}]\) and \(g_1\equiv g_0-1\), as well as its applications in metric number theory and the metric theory of functions. We prove that any natural number \(a\) can be represented as $$a=2^n+\sum\limits_{k=1}^{n}[(-1)^{1+\sigma_k}a_k2^{n-k}]\equiv (1a_1\ldots a_n)_{G},$$ where \(a_k\in \{0;1\}\) and \(\sigma_k=a_1+\ldots+a_{k-1}\), and there exist exactly two such representations. Any number \(x\in (0;g_0]\) can be represented as$$\delta_{\alpha_1}+\sum\limits_{k=2}^{\infty}(\delta_{\alpha_k}\prod\limits_{j=1}^{k-1}g_{\alpha_j})\equiv\Delta^{G_2}_{\alpha_1\alpha_2\ldots\alpha_k\ldots}, \delta_{\alpha_k}=\alpha_kg_{1-\alpha_k}.$$ Most numbers have a unique \(G_2\)-representation, while a countable set has exactly two representations: \(\Delta^{G_2}_{c_1\ldots c_m01(0)}=\Delta^{G_2}_{c_1\ldots c_m11(0)}\). For \(g_0=\frac12\), any number \(x\) in the interval \([0;1]\) has the expansion$$x=\frac{1}{2}\alpha_0+\sum\limits_{k=1}^{\infty}\frac{\alpha_k(-1)^{1+\sigma_k}}{2^k}\equiv\Delta_{\alpha_0\alpha_1\ldots\alpha_n\ldots}.$$ Lugansk National Taras Shevchenko University 2025-10-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2395 10.12958/adm2395 Algebra and Discrete Mathematics; Vol 40, No 1 (2025) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2395/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2395/1300 Copyright (c) 2025 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2025-10-27T20:24:52Z
collection OJS
language English
topic two-symbol system of encoding (representation) of numbers
\(G_2\)-representation of numbers
cylindrical set (cylinder)
left and right shift operator
tail set
group of continuous transformations of real interval preserving tails
11H71
26A46
93B17
spellingShingle two-symbol system of encoding (representation) of numbers
\(G_2\)-representation of numbers
cylindrical set (cylinder)
left and right shift operator
tail set
group of continuous transformations of real interval preserving tails
11H71
26A46
93B17
Pratsiovytyi, Mykola
Lysenko, Iryna
Ratushniak, Sofiia
A two-symbol system of encoding and some of its applications
topic_facet two-symbol system of encoding (representation) of numbers
\(G_2\)-representation of numbers
cylindrical set (cylinder)
left and right shift operator
tail set
group of continuous transformations of real interval preserving tails
11H71
26A46
93B17
format Article
author Pratsiovytyi, Mykola
Lysenko, Iryna
Ratushniak, Sofiia
author_facet Pratsiovytyi, Mykola
Lysenko, Iryna
Ratushniak, Sofiia
author_sort Pratsiovytyi, Mykola
title A two-symbol system of encoding and some of its applications
title_short A two-symbol system of encoding and some of its applications
title_full A two-symbol system of encoding and some of its applications
title_fullStr A two-symbol system of encoding and some of its applications
title_full_unstemmed A two-symbol system of encoding and some of its applications
title_sort two-symbol system of encoding and some of its applications
description The article is devoted to a two-symbol system of encoding for real numbers with two bases of different signs \(g_0 \in (0;\frac{1}{2}]\) and \(g_1\equiv g_0-1\), as well as its applications in metric number theory and the metric theory of functions. We prove that any natural number \(a\) can be represented as $$a=2^n+\sum\limits_{k=1}^{n}[(-1)^{1+\sigma_k}a_k2^{n-k}]\equiv (1a_1\ldots a_n)_{G},$$ where \(a_k\in \{0;1\}\) and \(\sigma_k=a_1+\ldots+a_{k-1}\), and there exist exactly two such representations. Any number \(x\in (0;g_0]\) can be represented as$$\delta_{\alpha_1}+\sum\limits_{k=2}^{\infty}(\delta_{\alpha_k}\prod\limits_{j=1}^{k-1}g_{\alpha_j})\equiv\Delta^{G_2}_{\alpha_1\alpha_2\ldots\alpha_k\ldots}, \delta_{\alpha_k}=\alpha_kg_{1-\alpha_k}.$$ Most numbers have a unique \(G_2\)-representation, while a countable set has exactly two representations: \(\Delta^{G_2}_{c_1\ldots c_m01(0)}=\Delta^{G_2}_{c_1\ldots c_m11(0)}\). For \(g_0=\frac12\), any number \(x\) in the interval \([0;1]\) has the expansion$$x=\frac{1}{2}\alpha_0+\sum\limits_{k=1}^{\infty}\frac{\alpha_k(-1)^{1+\sigma_k}}{2^k}\equiv\Delta_{\alpha_0\alpha_1\ldots\alpha_n\ldots}.$$
publisher Lugansk National Taras Shevchenko University
publishDate 2025
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2395
work_keys_str_mv AT pratsiovytyimykola atwosymbolsystemofencodingandsomeofitsapplications
AT lysenkoiryna atwosymbolsystemofencodingandsomeofitsapplications
AT ratushniaksofiia atwosymbolsystemofencodingandsomeofitsapplications
AT pratsiovytyimykola twosymbolsystemofencodingandsomeofitsapplications
AT lysenkoiryna twosymbolsystemofencodingandsomeofitsapplications
AT ratushniaksofiia twosymbolsystemofencodingandsomeofitsapplications
first_indexed 2025-12-02T15:42:42Z
last_indexed 2025-12-02T15:42:42Z
_version_ 1851774432166543360