On the edge-Wiener index of the disjunctive product of simple graphs

The edge-Wiener index of a simple connected graph \(G\) is defined as the sum of distances between all pairs of edges of \(G\) where the distance between two edges in \(G\) is the distance between the corresponding vertices in the line graph of \(G\). In this paper, we study the edge-Wiener index un...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Azari, M., Iranmanesh, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/242
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-242
record_format ojs
spelling admjournalluguniveduua-article-2422021-01-03T16:20:52Z On the edge-Wiener index of the disjunctive product of simple graphs Azari, M. Iranmanesh, A. distance in graphs, edge-Wiener index, disjunctive product of graphs 05C76, 05C12, 05C38 The edge-Wiener index of a simple connected graph \(G\) is defined as the sum of distances between all pairs of edges of \(G\) where the distance between two edges in \(G\) is the distance between the corresponding vertices in the line graph of \(G\). In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. Lugansk National Taras Shevchenko University 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/242 10.12958/adm242 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/242/pdf Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-01-03T16:20:52Z
collection OJS
language English
topic distance in graphs
edge-Wiener index
disjunctive product of graphs
05C76
05C12
05C38
spellingShingle distance in graphs
edge-Wiener index
disjunctive product of graphs
05C76
05C12
05C38
Azari, M.
Iranmanesh, A.
On the edge-Wiener index of the disjunctive product of simple graphs
topic_facet distance in graphs
edge-Wiener index
disjunctive product of graphs
05C76
05C12
05C38
format Article
author Azari, M.
Iranmanesh, A.
author_facet Azari, M.
Iranmanesh, A.
author_sort Azari, M.
title On the edge-Wiener index of the disjunctive product of simple graphs
title_short On the edge-Wiener index of the disjunctive product of simple graphs
title_full On the edge-Wiener index of the disjunctive product of simple graphs
title_fullStr On the edge-Wiener index of the disjunctive product of simple graphs
title_full_unstemmed On the edge-Wiener index of the disjunctive product of simple graphs
title_sort on the edge-wiener index of the disjunctive product of simple graphs
description The edge-Wiener index of a simple connected graph \(G\) is defined as the sum of distances between all pairs of edges of \(G\) where the distance between two edges in \(G\) is the distance between the corresponding vertices in the line graph of \(G\). In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/242
work_keys_str_mv AT azarim ontheedgewienerindexofthedisjunctiveproductofsimplegraphs
AT iranmanesha ontheedgewienerindexofthedisjunctiveproductofsimplegraphs
first_indexed 2025-12-02T15:26:25Z
last_indexed 2025-12-02T15:26:25Z
_version_ 1850411861255651328