On the edge-Wiener index of the disjunctive product of simple graphs
The edge-Wiener index of a simple connected graph \(G\) is defined as the sum of distances between all pairs of edges of \(G\) where the distance between two edges in \(G\) is the distance between the corresponding vertices in the line graph of \(G\). In this paper, we study the edge-Wiener index un...
Збережено в:
| Дата: | 2020 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/242 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-242 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-2422021-01-03T16:20:52Z On the edge-Wiener index of the disjunctive product of simple graphs Azari, M. Iranmanesh, A. distance in graphs, edge-Wiener index, disjunctive product of graphs 05C76, 05C12, 05C38 The edge-Wiener index of a simple connected graph \(G\) is defined as the sum of distances between all pairs of edges of \(G\) where the distance between two edges in \(G\) is the distance between the corresponding vertices in the line graph of \(G\). In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. Lugansk National Taras Shevchenko University 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/242 10.12958/adm242 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/242/pdf Copyright (c) 2020 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2021-01-03T16:20:52Z |
| collection |
OJS |
| language |
English |
| topic |
distance in graphs edge-Wiener index disjunctive product of graphs 05C76 05C12 05C38 |
| spellingShingle |
distance in graphs edge-Wiener index disjunctive product of graphs 05C76 05C12 05C38 Azari, M. Iranmanesh, A. On the edge-Wiener index of the disjunctive product of simple graphs |
| topic_facet |
distance in graphs edge-Wiener index disjunctive product of graphs 05C76 05C12 05C38 |
| format |
Article |
| author |
Azari, M. Iranmanesh, A. |
| author_facet |
Azari, M. Iranmanesh, A. |
| author_sort |
Azari, M. |
| title |
On the edge-Wiener index of the disjunctive product of simple graphs |
| title_short |
On the edge-Wiener index of the disjunctive product of simple graphs |
| title_full |
On the edge-Wiener index of the disjunctive product of simple graphs |
| title_fullStr |
On the edge-Wiener index of the disjunctive product of simple graphs |
| title_full_unstemmed |
On the edge-Wiener index of the disjunctive product of simple graphs |
| title_sort |
on the edge-wiener index of the disjunctive product of simple graphs |
| description |
The edge-Wiener index of a simple connected graph \(G\) is defined as the sum of distances between all pairs of edges of \(G\) where the distance between two edges in \(G\) is the distance between the corresponding vertices in the line graph of \(G\). In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2020 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/242 |
| work_keys_str_mv |
AT azarim ontheedgewienerindexofthedisjunctiveproductofsimplegraphs AT iranmanesha ontheedgewienerindexofthedisjunctiveproductofsimplegraphs |
| first_indexed |
2025-12-02T15:26:25Z |
| last_indexed |
2025-12-02T15:26:25Z |
| _version_ |
1850411861255651328 |