Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes

The binary Reed-Muller code \({\rm RM}(m-k,m)\) corresponds to the \(k\)-th power of the radical of \(GF(2)[G],\) where \(G\) is an elementary abelian group of order \(2^m \) (see~\cite{B}). Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Hannusch, Carolin, Lakatos, Piroska
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/25
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-25
record_format ojs
spelling admjournalluguniveduua-article-252016-05-11T05:58:11Z Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes Hannusch, Carolin Lakatos, Piroska Reed--Muller code, Generalized Reed--Muller code, radical, self-dual code; group algebra; Jacobson radical 94B05; 11T71; 20C05 The binary Reed-Muller code \({\rm RM}(m-k,m)\) corresponds to the \(k\)-th power of the radical of \(GF(2)[G],\) where \(G\) is an elementary abelian group of order \(2^m \) (see~\cite{B}). Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd \(m\).The group algebra approach enables us to find a self-dual code for even \(m=2k \) in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes.In the group algebra\[ GF(2)[G]\cong GF(2)[x_1,x_2,\dots, x_m]/(x_1^2-1,x_2^2-1, \dots x_m^2-1)\]we construct self-dual binary \(C=[2^{2k},2^{2k-1},2^k]\) codes with property\[{\rm RM}(k-1,2k) \subset C \subset {\rm RM}(k,2k)\] for an arbitrary integer \(k\).In some cases these codes can be obtained as the direct product of two copies of \({\rm RM}(k-1,k)\)-codes. For \(k\geq 2\) the codes constructed are doubly even and for \(k=2\) we get two non-isomorphic \([16,8,4]\)-codes. If \(k>2\) we have some self-dual codes with good parameters which have not been described yet. Lugansk National Taras Shevchenko University 2016-05-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/25 Algebra and Discrete Mathematics; Vol 21, No 1 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/25/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/25/2 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/25/53 Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2016-05-11T05:58:11Z
collection OJS
language English
topic Reed--Muller code
Generalized Reed--Muller code
radical
self-dual code; group algebra; Jacobson radical
94B05
11T71
20C05
spellingShingle Reed--Muller code
Generalized Reed--Muller code
radical
self-dual code; group algebra; Jacobson radical
94B05
11T71
20C05
Hannusch, Carolin
Lakatos, Piroska
Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes
topic_facet Reed--Muller code
Generalized Reed--Muller code
radical
self-dual code; group algebra; Jacobson radical
94B05
11T71
20C05
format Article
author Hannusch, Carolin
Lakatos, Piroska
author_facet Hannusch, Carolin
Lakatos, Piroska
author_sort Hannusch, Carolin
title Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes
title_short Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes
title_full Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes
title_fullStr Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes
title_full_unstemmed Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes
title_sort construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes
description The binary Reed-Muller code \({\rm RM}(m-k,m)\) corresponds to the \(k\)-th power of the radical of \(GF(2)[G],\) where \(G\) is an elementary abelian group of order \(2^m \) (see~\cite{B}). Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd \(m\).The group algebra approach enables us to find a self-dual code for even \(m=2k \) in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes.In the group algebra\[ GF(2)[G]\cong GF(2)[x_1,x_2,\dots, x_m]/(x_1^2-1,x_2^2-1, \dots x_m^2-1)\]we construct self-dual binary \(C=[2^{2k},2^{2k-1},2^k]\) codes with property\[{\rm RM}(k-1,2k) \subset C \subset {\rm RM}(k,2k)\] for an arbitrary integer \(k\).In some cases these codes can be obtained as the direct product of two copies of \({\rm RM}(k-1,k)\)-codes. For \(k\geq 2\) the codes constructed are doubly even and for \(k=2\) we get two non-isomorphic \([16,8,4]\)-codes. If \(k>2\) we have some self-dual codes with good parameters which have not been described yet.
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/25
work_keys_str_mv AT hannuschcarolin constructionofselfdualbinary22k22k12kcodes
AT lakatospiroska constructionofselfdualbinary22k22k12kcodes
first_indexed 2025-12-02T15:39:55Z
last_indexed 2025-12-02T15:39:55Z
_version_ 1850411577260376064