Involution rings with unique minimal *-biideal
The structure of certain involution rings which have exactly one minimal *-biideal is determined. In addition, involution rings with identity having a unique maximal biideal are characterized.
Збережено в:
| Дата: | 2016 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/251 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-251 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-2512016-07-12T10:09:40Z Involution rings with unique minimal *-biideal Mendes, D. I. C. involution, biideal, nilpotent ring, local ring, subdirectly irreducible ring, Jacobson radical Primary 16W10; Secondary 16D25, 16N20 The structure of certain involution rings which have exactly one minimal *-biideal is determined. In addition, involution rings with identity having a unique maximal biideal are characterized. Lugansk National Taras Shevchenko University Research supported by FEDER and Portuguese funds through the Centre for Mathematics (University of Beira Interior) and the Portuguese Foundation for Science and Technology (FCT), Project PEst-OE/MAT/UI0212/2013 2016-07-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/251 Algebra and Discrete Mathematics; Vol 21, No 2 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/251/62 Copyright (c) 2016 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2016-07-12T10:09:40Z |
| collection |
OJS |
| language |
English |
| topic |
involution biideal nilpotent ring local ring subdirectly irreducible ring Jacobson radical Primary 16W10; Secondary 16D25 16N20 |
| spellingShingle |
involution biideal nilpotent ring local ring subdirectly irreducible ring Jacobson radical Primary 16W10; Secondary 16D25 16N20 Mendes, D. I. C. Involution rings with unique minimal *-biideal |
| topic_facet |
involution biideal nilpotent ring local ring subdirectly irreducible ring Jacobson radical Primary 16W10; Secondary 16D25 16N20 |
| format |
Article |
| author |
Mendes, D. I. C. |
| author_facet |
Mendes, D. I. C. |
| author_sort |
Mendes, D. I. C. |
| title |
Involution rings with unique minimal *-biideal |
| title_short |
Involution rings with unique minimal *-biideal |
| title_full |
Involution rings with unique minimal *-biideal |
| title_fullStr |
Involution rings with unique minimal *-biideal |
| title_full_unstemmed |
Involution rings with unique minimal *-biideal |
| title_sort |
involution rings with unique minimal *-biideal |
| description |
The structure of certain involution rings which have exactly one minimal *-biideal is determined. In addition, involution rings with identity having a unique maximal biideal are characterized. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2016 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/251 |
| work_keys_str_mv |
AT mendesdic involutionringswithuniqueminimalbiideal |
| first_indexed |
2025-12-02T15:42:44Z |
| last_indexed |
2025-12-02T15:42:44Z |
| _version_ |
1850411753931800576 |