Involution rings with unique minimal *-biideal

The structure of certain involution rings which have exactly one minimal *-biideal is determined. In addition, involution rings with identity having a unique maximal biideal are characterized.

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Mendes, D. I. C.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/251
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-251
record_format ojs
spelling admjournalluguniveduua-article-2512016-07-12T10:09:40Z Involution rings with unique minimal *-biideal Mendes, D. I. C. involution, biideal, nilpotent ring, local ring, subdirectly irreducible ring, Jacobson radical Primary 16W10; Secondary 16D25, 16N20 The structure of certain involution rings which have exactly one minimal *-biideal is determined. In addition, involution rings with identity having a unique maximal biideal are characterized. Lugansk National Taras Shevchenko University Research supported by FEDER and Portuguese funds through the Centre for Mathematics (University of Beira Interior) and the Portuguese Foundation for Science and Technology (FCT), Project PEst-OE/MAT/UI0212/2013 2016-07-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/251 Algebra and Discrete Mathematics; Vol 21, No 2 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/251/62 Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2016-07-12T10:09:40Z
collection OJS
language English
topic involution
biideal
nilpotent ring
local ring
subdirectly irreducible ring
Jacobson radical
Primary 16W10; Secondary 16D25
16N20
spellingShingle involution
biideal
nilpotent ring
local ring
subdirectly irreducible ring
Jacobson radical
Primary 16W10; Secondary 16D25
16N20
Mendes, D. I. C.
Involution rings with unique minimal *-biideal
topic_facet involution
biideal
nilpotent ring
local ring
subdirectly irreducible ring
Jacobson radical
Primary 16W10; Secondary 16D25
16N20
format Article
author Mendes, D. I. C.
author_facet Mendes, D. I. C.
author_sort Mendes, D. I. C.
title Involution rings with unique minimal *-biideal
title_short Involution rings with unique minimal *-biideal
title_full Involution rings with unique minimal *-biideal
title_fullStr Involution rings with unique minimal *-biideal
title_full_unstemmed Involution rings with unique minimal *-biideal
title_sort involution rings with unique minimal *-biideal
description The structure of certain involution rings which have exactly one minimal *-biideal is determined. In addition, involution rings with identity having a unique maximal biideal are characterized.
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/251
work_keys_str_mv AT mendesdic involutionringswithuniqueminimalbiideal
first_indexed 2025-12-02T15:42:44Z
last_indexed 2025-12-02T15:42:44Z
_version_ 1850411753931800576