Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph

A graph \(X\) is said to be \(G\)-semisymmetric if it is regular and there exists a subgroup \(G\) of \(A := \operatorname{Aut}(X)\) acting transitively on its edge set but not on its vertex set. In the case of \(G = A\), we call \(X\) a semisymmetric graph. Finding elementary abelian covering proje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Talebi, A. A., Mehdipoor, N.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2021
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/252
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:A graph \(X\) is said to be \(G\)-semisymmetric if it is regular and there exists a subgroup \(G\) of \(A := \operatorname{Aut}(X)\) acting transitively on its edge set but not on its vertex set. In the case of \(G = A\), we call \(X\) a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric \(z_{p}\)-covers of the \(C20\) graph.