Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph

A graph \(X\) is said to be \(G\)-semisymmetric if it is regular and there exists a subgroup \(G\) of \(A := \operatorname{Aut}(X)\) acting transitively on its edge set but not on its vertex set. In the case of \(G = A\), we call \(X\) a semisymmetric graph. Finding elementary abelian covering proje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Talebi, A. A., Mehdipoor, N.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2021
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/252
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-252
record_format ojs
spelling admjournalluguniveduua-article-2522021-07-19T08:39:30Z Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph Talebi, A. A. Mehdipoor, N. invariant subspaces, homology group, $C20$ graph, semisymmetric graphs, regular covering, lifting automorphisms 05C25, 20b25 A graph \(X\) is said to be \(G\)-semisymmetric if it is regular and there exists a subgroup \(G\) of \(A := \operatorname{Aut}(X)\) acting transitively on its edge set but not on its vertex set. In the case of \(G = A\), we call \(X\) a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric \(z_{p}\)-covers of the \(C20\) graph. Lugansk National Taras Shevchenko University 2021-07-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/252 10.12958/adm252 Algebra and Discrete Mathematics; Vol 31, No 2 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/252/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/252/817 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/252/819 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/252/834 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/252/835 Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-07-19T08:39:30Z
collection OJS
language English
topic invariant subspaces
homology group
$C20$ graph
semisymmetric graphs
regular covering
lifting automorphisms
05C25
20b25
spellingShingle invariant subspaces
homology group
$C20$ graph
semisymmetric graphs
regular covering
lifting automorphisms
05C25
20b25
Talebi, A. A.
Mehdipoor, N.
Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph
topic_facet invariant subspaces
homology group
$C20$ graph
semisymmetric graphs
regular covering
lifting automorphisms
05C25
20b25
format Article
author Talebi, A. A.
Mehdipoor, N.
author_facet Talebi, A. A.
Mehdipoor, N.
author_sort Talebi, A. A.
title Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph
title_short Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph
title_full Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph
title_fullStr Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph
title_full_unstemmed Semisymmetric \(Z_{p}\)-covers of the \(C20\) graph
title_sort semisymmetric \(z_{p}\)-covers of the \(c20\) graph
description A graph \(X\) is said to be \(G\)-semisymmetric if it is regular and there exists a subgroup \(G\) of \(A := \operatorname{Aut}(X)\) acting transitively on its edge set but not on its vertex set. In the case of \(G = A\), we call \(X\) a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric \(z_{p}\)-covers of the \(C20\) graph.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/252
work_keys_str_mv AT talebiaa semisymmetriczpcoversofthec20graph
AT mehdipoorn semisymmetriczpcoversofthec20graph
first_indexed 2025-12-02T15:39:58Z
last_indexed 2025-12-02T15:39:58Z
_version_ 1850411580546613248