Construction of self-dual binary \([2^{2k},2^{2k-1},2^k]\)-codes
The binary Reed-Muller code \({\rm RM}(m-k,m)\) corresponds to the \(k\)-th power of the radical of \(GF(2)[G],\) where \(G\) is an elementary abelian group of order \(2^m \) (see~\cite{B}). Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for...
Збережено в:
| Дата: | 2016 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/25 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |