Computing bounds for the general sum-connectivity index of some graph operations

Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). Denote by \(d_{G}(u)\) the degree of a vertex \(u\in V(G)\). The general sum-connectivity index of \(G\) is defined as \(\chi_{\alpha}(G)=\sum_{u_{1}u_2\in E(G)}(d_{G}(u_1)+d_{G}(u_2))^{\alpha}\), where \(\alpha\) is a real number....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Akhter, S., Farooq, R.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2020
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/281
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). Denote by \(d_{G}(u)\) the degree of a vertex \(u\in V(G)\). The general sum-connectivity index of \(G\) is defined as \(\chi_{\alpha}(G)=\sum_{u_{1}u_2\in E(G)}(d_{G}(u_1)+d_{G}(u_2))^{\alpha}\), where \(\alpha\) is a real number. In this paper, we compute the bounds for general sum-connectivity index of several graph operations. These operations include corona product, cartesian product, strong product, composition, join, disjunction and symmetric difference of graphs. We apply the obtained results to find the bounds for the general sum-connectivity index of some graphs of general interest.