Computing bounds for the general sum-connectivity index of some graph operations
Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). Denote by \(d_{G}(u)\) the degree of a vertex \(u\in V(G)\). The general sum-connectivity index of \(G\) is defined as \(\chi_{\alpha}(G)=\sum_{u_{1}u_2\in E(G)}(d_{G}(u_1)+d_{G}(u_2))^{\alpha}\), where \(\alpha\) is a real number....
Gespeichert in:
| Datum: | 2020 |
|---|---|
| Hauptverfasser: | Akhter, S., Farooq, R. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2020
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/281 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Computing bounds for the general sum-connectivity index of some graph operations
von: Akhter, S., et al.
Veröffentlicht: (2020) -
On the edge-Wiener index of the disjunctive product of simple graphs
von: Azari, M., et al.
Veröffentlicht: (2020) -
On the edge-Wiener index of the disjunctive product of simple graphs
von: Azari, M., et al.
Veröffentlicht: (2020) -
Labelling matrices and index matrices of a graph structure
von: Dinesh, T., et al.
Veröffentlicht: (2018) -
On graphs with graphic imbalance sequences
von: Kozerenko, Sergiy, et al.
Veröffentlicht: (2018)