\((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras

The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for qua...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Albuquerque, Helena María Mamede, Barreiro, María Elisabete Félix, Delgado, José María Sánchez
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2017
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/283
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-283
record_format ojs
spelling admjournalluguniveduua-article-2832017-10-11T02:03:37Z \((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras Albuquerque, Helena María Mamede Barreiro, María Elisabete Félix Delgado, José María Sánchez graded quasialgebras, quasicrossed product, group algebras, twisted group algebras 17D99; 16S35 The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems and another for \((G,\phi)\)-crossed products. Also the notion of graded-bimodule in order to study simple \((G,\phi)\)-crossed products is studied. Lugansk National Taras Shevchenko University 2017-10-07 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/283 Algebra and Discrete Mathematics; Vol 24, No 1 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/283/pdf Copyright (c) 2017 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2017-10-11T02:03:37Z
collection OJS
language English
topic graded quasialgebras
quasicrossed product
group algebras
twisted group algebras
17D99
16S35
spellingShingle graded quasialgebras
quasicrossed product
group algebras
twisted group algebras
17D99
16S35
Albuquerque, Helena María Mamede
Barreiro, María Elisabete Félix
Delgado, José María Sánchez
\((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras
topic_facet graded quasialgebras
quasicrossed product
group algebras
twisted group algebras
17D99
16S35
format Article
author Albuquerque, Helena María Mamede
Barreiro, María Elisabete Félix
Delgado, José María Sánchez
author_facet Albuquerque, Helena María Mamede
Barreiro, María Elisabete Félix
Delgado, José María Sánchez
author_sort Albuquerque, Helena María Mamede
title \((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras
title_short \((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras
title_full \((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras
title_fullStr \((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras
title_full_unstemmed \((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras
title_sort \((g,\phi)\)-crossed product on \((g,\phi)\)-quasiassociative algebras
description The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems and another for \((G,\phi)\)-crossed products. Also the notion of graded-bimodule in order to study simple \((G,\phi)\)-crossed products is studied.
publisher Lugansk National Taras Shevchenko University
publishDate 2017
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/283
work_keys_str_mv AT albuquerquehelenamariamamede gphicrossedproductongphiquasiassociativealgebras
AT barreiromariaelisabetefelix gphicrossedproductongphiquasiassociativealgebras
AT delgadojosemariasanchez gphicrossedproductongphiquasiassociativealgebras
first_indexed 2025-12-02T15:35:52Z
last_indexed 2025-12-02T15:35:52Z
_version_ 1850411321636421632