Indecomposable and irreducible \(t\)-monomial matrices over commutative rings
We introduce the notion of the defining sequence of a permutation indecomposable monomial matrix over a commutative ring and obtain necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence.
Saved in:
| Date: | 2016 |
|---|---|
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2016
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/287 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| _version_ | 1856543255567532032 |
|---|---|
| author | Bondarenko, Vitaliy Mykhaylovych Bortos, Maria Dinis, Ruslana Tylyshchak, Alexander |
| author_facet | Bondarenko, Vitaliy Mykhaylovych Bortos, Maria Dinis, Ruslana Tylyshchak, Alexander |
| author_sort | Bondarenko, Vitaliy Mykhaylovych |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2016-11-15T13:03:03Z |
| description | We introduce the notion of the defining sequence of a permutation indecomposable monomial matrix over a commutative ring and obtain necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence. |
| first_indexed | 2025-12-02T15:31:30Z |
| format | Article |
| id | admjournalluguniveduua-article-287 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:31:30Z |
| publishDate | 2016 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-2872016-11-15T13:03:03Z Indecomposable and irreducible \(t\)-monomial matrices over commutative rings Bondarenko, Vitaliy Mykhaylovych Bortos, Maria Dinis, Ruslana Tylyshchak, Alexander local ring, similarity, indecomposable matrix, irreducible matrix, canonically \(t\)-cyclic matrix, defining sequence, group, representation 15B33, 15A30 We introduce the notion of the defining sequence of a permutation indecomposable monomial matrix over a commutative ring and obtain necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence. Lugansk National Taras Shevchenko University 2016-11-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/287 Algebra and Discrete Mathematics; Vol 22, No 1 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/287/pdf Copyright (c) 2016 Algebra and Discrete Mathematics |
| spellingShingle | local ring similarity indecomposable matrix irreducible matrix canonically \(t\)-cyclic matrix defining sequence group representation 15B33 15A30 Bondarenko, Vitaliy Mykhaylovych Bortos, Maria Dinis, Ruslana Tylyshchak, Alexander Indecomposable and irreducible \(t\)-monomial matrices over commutative rings |
| title | Indecomposable and irreducible \(t\)-monomial matrices over commutative rings |
| title_full | Indecomposable and irreducible \(t\)-monomial matrices over commutative rings |
| title_fullStr | Indecomposable and irreducible \(t\)-monomial matrices over commutative rings |
| title_full_unstemmed | Indecomposable and irreducible \(t\)-monomial matrices over commutative rings |
| title_short | Indecomposable and irreducible \(t\)-monomial matrices over commutative rings |
| title_sort | indecomposable and irreducible \(t\)-monomial matrices over commutative rings |
| topic | local ring similarity indecomposable matrix irreducible matrix canonically \(t\)-cyclic matrix defining sequence group representation 15B33 15A30 |
| topic_facet | local ring similarity indecomposable matrix irreducible matrix canonically \(t\)-cyclic matrix defining sequence group representation 15B33 15A30 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/287 |
| work_keys_str_mv | AT bondarenkovitaliymykhaylovych indecomposableandirreducibletmonomialmatricesovercommutativerings AT bortosmaria indecomposableandirreducibletmonomialmatricesovercommutativerings AT dinisruslana indecomposableandirreducibletmonomialmatricesovercommutativerings AT tylyshchakalexander indecomposableandirreducibletmonomialmatricesovercommutativerings |