Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I

We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index \(in\,A\) of a right noetherian semiperfect ring \(A\) as the maximal real eigen-value of i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Chernousova, Zh. T., Dokuchaev, M. A., Khibina, M. A., Kirichenko, V. V., Miroshnichenko, S. G., Zhuravlev, V. N.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/3
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543431300481024
author Chernousova, Zh. T.
Dokuchaev, M. A.
Khibina, M. A.
Kirichenko, V. V.
Miroshnichenko, S. G.
Zhuravlev, V. N.
author_facet Chernousova, Zh. T.
Dokuchaev, M. A.
Khibina, M. A.
Kirichenko, V. V.
Miroshnichenko, S. G.
Zhuravlev, V. N.
author_sort Chernousova, Zh. T.
baseUrl_str
collection OJS
datestamp_date 2018-05-15T14:22:44Z
description We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index \(in\,A\) of a right noetherian semiperfect ring \(A\) as the maximal real eigen-value of its adjacency matrix. A tiled order \(\Lambda \) is integral if \(in\,\Lambda\) is an integer. Every cyclic Gorenstein tiled order is integral. In particular, \(in\, \Lambda\,=\,1\) if and only if  \(\Lambda\) is hereditary. We give an example of a non-integral Gorenstein tiled order. We prove that a reduced \((0, 1)\)-order is Gorenstein if and only if either\(in\,\Lambda\,=\,w(\Lambda )\,=\,1\), or \(in\,\Lambda\,=\,w(\Lambda )\,=\,2\), where \(w(\Lambda )\) is a width of \(\Lambda \).
first_indexed 2025-12-02T15:42:47Z
format Article
id admjournalluguniveduua-article-3
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:42:47Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-32018-05-15T14:22:44Z Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I Chernousova, Zh. T. Dokuchaev, M. A. Khibina, M. A. Kirichenko, V. V. Miroshnichenko, S. G. Zhuravlev, V. N. emiperfect ring, tiled order, quiver, partially ordered set, index of semiperfect ring, Gorenstein tiled order, finite Markov chain 16P40, 16G10 We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index \(in\,A\) of a right noetherian semiperfect ring \(A\) as the maximal real eigen-value of its adjacency matrix. A tiled order \(\Lambda \) is integral if \(in\,\Lambda\) is an integer. Every cyclic Gorenstein tiled order is integral. In particular, \(in\, \Lambda\,=\,1\) if and only if  \(\Lambda\) is hereditary. We give an example of a non-integral Gorenstein tiled order. We prove that a reduced \((0, 1)\)-order is Gorenstein if and only if either\(in\,\Lambda\,=\,w(\Lambda )\,=\,1\), or \(in\,\Lambda\,=\,w(\Lambda )\,=\,2\), where \(w(\Lambda )\) is a width of \(\Lambda \). Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/3 Algebra and Discrete Mathematics; Vol 1, No 1 (2002) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/3/4 Copyright (c) 2015 Algebra and Discrete Mathematics
spellingShingle emiperfect ring
tiled order
quiver
partially ordered set
index of semiperfect ring
Gorenstein tiled order
finite Markov chain
16P40
16G10
Chernousova, Zh. T.
Dokuchaev, M. A.
Khibina, M. A.
Kirichenko, V. V.
Miroshnichenko, S. G.
Zhuravlev, V. N.
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_full Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_fullStr Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_full_unstemmed Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_short Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_sort tiled orders over discrete valuation rings, finite markov chains and partially ordered sets. i
topic emiperfect ring
tiled order
quiver
partially ordered set
index of semiperfect ring
Gorenstein tiled order
finite Markov chain
16P40
16G10
topic_facet emiperfect ring
tiled order
quiver
partially ordered set
index of semiperfect ring
Gorenstein tiled order
finite Markov chain
16P40
16G10
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/3
work_keys_str_mv AT chernousovazht tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT dokuchaevma tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT khibinama tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT kirichenkovv tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT miroshnichenkosg tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT zhuravlevvn tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi