Module decompositions via Rickart modules

This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module \(M\) has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Harmanci, Abdullah, Ungor, Burcu
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/327
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-327
record_format ojs
spelling admjournalluguniveduua-article-3272018-10-20T08:02:25Z Module decompositions via Rickart modules Harmanci, Abdullah Ungor, Burcu \(\mathrm{Soc}(\cdot)\)-inverse split module, \(\mathrm{Rad}(\cdot)\)-inverse split module, Rickart module 16D10; 16D40; 16D80 This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module \(M\) has decompositions \(M=\mathrm{Soc}(M) \oplus N\) and \(M=\mathrm{Rad}(M) \oplus K\) where \(N\) and \(K\) are Rickart if and only if \(M\) is \(\mathrm{Soc}(M)\)-inverse split and \(\mathrm{Rad}(M)\)-inverse split, respectively. Right \(\mathrm{Soc}(\cdot)\)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring \(R\) which has a decomposition \(R=\mathrm{Soc}(R_R)\oplus I\) with \(I\) hereditary Rickart module are obtained. Lugansk National Taras Shevchenko University 2018-10-20 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/327 Algebra and Discrete Mathematics; Vol 26, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/327/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/327/438 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-10-20T08:02:25Z
collection OJS
language English
topic \(\mathrm{Soc}(\cdot)\)-inverse split module
\(\mathrm{Rad}(\cdot)\)-inverse split module
Rickart module
16D10
16D40
16D80
spellingShingle \(\mathrm{Soc}(\cdot)\)-inverse split module
\(\mathrm{Rad}(\cdot)\)-inverse split module
Rickart module
16D10
16D40
16D80
Harmanci, Abdullah
Ungor, Burcu
Module decompositions via Rickart modules
topic_facet \(\mathrm{Soc}(\cdot)\)-inverse split module
\(\mathrm{Rad}(\cdot)\)-inverse split module
Rickart module
16D10
16D40
16D80
format Article
author Harmanci, Abdullah
Ungor, Burcu
author_facet Harmanci, Abdullah
Ungor, Burcu
author_sort Harmanci, Abdullah
title Module decompositions via Rickart modules
title_short Module decompositions via Rickart modules
title_full Module decompositions via Rickart modules
title_fullStr Module decompositions via Rickart modules
title_full_unstemmed Module decompositions via Rickart modules
title_sort module decompositions via rickart modules
description This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module \(M\) has decompositions \(M=\mathrm{Soc}(M) \oplus N\) and \(M=\mathrm{Rad}(M) \oplus K\) where \(N\) and \(K\) are Rickart if and only if \(M\) is \(\mathrm{Soc}(M)\)-inverse split and \(\mathrm{Rad}(M)\)-inverse split, respectively. Right \(\mathrm{Soc}(\cdot)\)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring \(R\) which has a decomposition \(R=\mathrm{Soc}(R_R)\oplus I\) with \(I\) hereditary Rickart module are obtained.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/327
work_keys_str_mv AT harmanciabdullah moduledecompositionsviarickartmodules
AT ungorburcu moduledecompositionsviarickartmodules
first_indexed 2025-12-02T15:35:55Z
last_indexed 2025-12-02T15:35:55Z
_version_ 1850411325356769280