On the saturations of submodules
Let \(R\subseteq S\) be a ring extension, and let \(A\) be an \(R\)-submodule of \(S\). The saturation of \(A\) (in \(S\)) by \(\tau\) is set \(A_{[\tau] }= \left\{x\in S : tx\in A \text{ for some } t\in \tau\right\}\), where \(\tau\) is a multiplicative subset of \(R\). We study properties of satu...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | Paudel, Lokendra, Tchamna, Simplice |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/361 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSimilar Items
-
On the saturations of submodules
by: Paudel, Lokendra, et al.
Published: (2018) -
Cancellation ideals of a ring extension
by: Tchamna, S.
Published: (2021) -
Cancellation ideals of a ring extension
by: Tchamna, S.
Published: (2021) -
\(S\)-second submodules of a module
by: Farshadifar, F.
Published: (2022) -
\(S\)-second submodules of a module
by: Farshadifar, F.
Published: (2022)