Equivalence of Carter diagrams

We introduce the equivalence relation \(\rho\) on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing \(l\)-cycles with \(l > 4\) to an equivalent Carter diagram containing only \(4\)-cycles. Transforming one Carter diagram \(\Gamma_1\) to anot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
1. Verfasser: Stekolshchik, Rafael
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2017
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/370
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:We introduce the equivalence relation \(\rho\) on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing \(l\)-cycles with \(l > 4\) to an equivalent Carter diagram containing only \(4\)-cycles. Transforming one Carter diagram \(\Gamma_1\) to another Carter diagram \(\Gamma_2\) we can get a certain intermediate diagram \(\Gamma'\) which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation \(\rho\) is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams.