On the existence of degree-magic labellings of the \(n\)-fold self-union of complete bipartite graphs

Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph \(G\) is called degree-magic if there exists a labelling of the edges by integers \(1,2,\dots,|E(G)|\) such that the sum of the labels of the edges incident with any vertex \(v\)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Inpoonjai, Phaisatcha, Jiarasuksakun, Thiradet
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/374
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph \(G\) is called degree-magic if there exists a labelling of the edges by integers \(1,2,\dots,|E(G)|\) such that the sum of the labels of the edges incident with any vertex \(v\) is equal to \((1+|E(G)|)\deg(v)/2\). Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the \(n\)-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even \(n\)-tuple magic rectangles to exist.