On recurrence in \(G\)-spaces

We introduce and analyze the following general concept of recurrence. Let \(G\) be a group and let \(X\) be a G-space with the action \(G\times X\longrightarrow X\), \((g,x)\longmapsto gx\). For a family \(\mathfrak{F}\) of subset of \(X\) and \(A\in \mathfrak{F}\), we denote \(\Delta_{\mathfrak{F}}...

Full description

Saved in:
Bibliographic Details
Date:2017
Main Authors: Protasov, Igor V., Protasova, Ksenia D.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2017
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/402
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:We introduce and analyze the following general concept of recurrence. Let \(G\) be a group and let \(X\) be a G-space with the action \(G\times X\longrightarrow X\), \((g,x)\longmapsto gx\). For a family \(\mathfrak{F}\) of subset of \(X\) and \(A\in \mathfrak{F}\), we denote \(\Delta_{\mathfrak{F}}(A)=\{g\in G: gB\subseteq A\) for some \(B\in \mathfrak{F}\), \(B\subseteq A\}\), and say that a subset \(R\) of \(G\) is \(\mathfrak{F}\)-recurrent if \(R\bigcap \Delta_{\mathfrak{F}} (A)\neq\emptyset\) for each \(A\in \mathfrak{F}\).