On recurrence in \(G\)-spaces

We introduce and analyze the following general concept of recurrence. Let \(G\) be a group and let \(X\) be a G-space with the action \(G\times X\longrightarrow X\), \((g,x)\longmapsto gx\). For a family \(\mathfrak{F}\) of subset of \(X\) and \(A\in \mathfrak{F}\), we denote \(\Delta_{\mathfrak{F}}...

Full description

Saved in:
Bibliographic Details
Date:2017
Main Authors: Protasov, Igor V., Protasova, Ksenia D.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2017
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/402
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-402
record_format ojs
spelling admjournalluguniveduua-article-4022017-07-02T21:59:43Z On recurrence in \(G\)-spaces Protasov, Igor V. Protasova, Ksenia D. \(G\)-space, recurrent subset, ultrafilters, Stone-\(\check{C}\)ech compactification 37A05, 22A15, 03E05 We introduce and analyze the following general concept of recurrence. Let \(G\) be a group and let \(X\) be a G-space with the action \(G\times X\longrightarrow X\), \((g,x)\longmapsto gx\). For a family \(\mathfrak{F}\) of subset of \(X\) and \(A\in \mathfrak{F}\), we denote \(\Delta_{\mathfrak{F}}(A)=\{g\in G: gB\subseteq A\) for some \(B\in \mathfrak{F}\), \(B\subseteq A\}\), and say that a subset \(R\) of \(G\) is \(\mathfrak{F}\)-recurrent if \(R\bigcap \Delta_{\mathfrak{F}} (A)\neq\emptyset\) for each \(A\in \mathfrak{F}\). Lugansk National Taras Shevchenko University 2017-07-03 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/402 Algebra and Discrete Mathematics; Vol 23, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/402/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/402/169 Copyright (c) 2017 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2017-07-02T21:59:43Z
collection OJS
language English
topic \(G\)-space
recurrent subset
ultrafilters
Stone-\(\check{C}\)ech compactification
37A05
22A15
03E05
spellingShingle \(G\)-space
recurrent subset
ultrafilters
Stone-\(\check{C}\)ech compactification
37A05
22A15
03E05
Protasov, Igor V.
Protasova, Ksenia D.
On recurrence in \(G\)-spaces
topic_facet \(G\)-space
recurrent subset
ultrafilters
Stone-\(\check{C}\)ech compactification
37A05
22A15
03E05
format Article
author Protasov, Igor V.
Protasova, Ksenia D.
author_facet Protasov, Igor V.
Protasova, Ksenia D.
author_sort Protasov, Igor V.
title On recurrence in \(G\)-spaces
title_short On recurrence in \(G\)-spaces
title_full On recurrence in \(G\)-spaces
title_fullStr On recurrence in \(G\)-spaces
title_full_unstemmed On recurrence in \(G\)-spaces
title_sort on recurrence in \(g\)-spaces
description We introduce and analyze the following general concept of recurrence. Let \(G\) be a group and let \(X\) be a G-space with the action \(G\times X\longrightarrow X\), \((g,x)\longmapsto gx\). For a family \(\mathfrak{F}\) of subset of \(X\) and \(A\in \mathfrak{F}\), we denote \(\Delta_{\mathfrak{F}}(A)=\{g\in G: gB\subseteq A\) for some \(B\in \mathfrak{F}\), \(B\subseteq A\}\), and say that a subset \(R\) of \(G\) is \(\mathfrak{F}\)-recurrent if \(R\bigcap \Delta_{\mathfrak{F}} (A)\neq\emptyset\) for each \(A\in \mathfrak{F}\).
publisher Lugansk National Taras Shevchenko University
publishDate 2017
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/402
work_keys_str_mv AT protasovigorv onrecurrenceingspaces
AT protasovakseniad onrecurrenceingspaces
first_indexed 2025-12-02T15:31:37Z
last_indexed 2025-12-02T15:31:37Z
_version_ 1850412223947603968