On the lattice of cyclic codes over finite chain rings

In this paper, \(R\) is a finite chain ring of invariants \((q,s)\), and \(\ell\) is a positive integer fulfilling \(\operatorname{gcd}(\ell,q) = 1\). In the language of \(q\)-cyclotomic cosets modulo \(\ell\), the cyclic codes over \(R\) of length \(\ell\) are uniquely decomposed into a direct sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Fotue-Tabue, Alexandre, Mouaha, Christophe
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/431
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543205373247488
author Fotue-Tabue, Alexandre
Mouaha, Christophe
author_facet Fotue-Tabue, Alexandre
Mouaha, Christophe
author_sort Fotue-Tabue, Alexandre
baseUrl_str
collection OJS
datestamp_date 2019-07-14T19:54:06Z
description In this paper, \(R\) is a finite chain ring of invariants \((q,s)\), and \(\ell\) is a positive integer fulfilling \(\operatorname{gcd}(\ell,q) = 1\). In the language of \(q\)-cyclotomic cosets modulo \(\ell\), the cyclic codes over \(R\) of length \(\ell\) are uniquely decomposed into a direct sum of trace-representable cyclic codes over \(R\) and the lattice of cyclic codes over \(R\) of length \(\ell\) is investigated.
first_indexed 2026-02-08T07:56:50Z
format Article
id admjournalluguniveduua-article-431
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:56:50Z
publishDate 2019
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-4312019-07-14T19:54:06Z On the lattice of cyclic codes over finite chain rings Fotue-Tabue, Alexandre Mouaha, Christophe finite chain rings, cyclotomic cosets, linear code, cyclic code, trace map 13B05, 94B05, 94B15, 03G10, 16P10 In this paper, \(R\) is a finite chain ring of invariants \((q,s)\), and \(\ell\) is a positive integer fulfilling \(\operatorname{gcd}(\ell,q) = 1\). In the language of \(q\)-cyclotomic cosets modulo \(\ell\), the cyclic codes over \(R\) of length \(\ell\) are uniquely decomposed into a direct sum of trace-representable cyclic codes over \(R\) and the lattice of cyclic codes over \(R\) of length \(\ell\) is investigated. Lugansk National Taras Shevchenko University 2019-07-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/431 Algebra and Discrete Mathematics; Vol 27, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/431/pdf Copyright (c) 2019 Algebra and Discrete Mathematics
spellingShingle finite chain rings
cyclotomic cosets
linear code
cyclic code
trace map
13B05
94B05
94B15
03G10
16P10
Fotue-Tabue, Alexandre
Mouaha, Christophe
On the lattice of cyclic codes over finite chain rings
title On the lattice of cyclic codes over finite chain rings
title_full On the lattice of cyclic codes over finite chain rings
title_fullStr On the lattice of cyclic codes over finite chain rings
title_full_unstemmed On the lattice of cyclic codes over finite chain rings
title_short On the lattice of cyclic codes over finite chain rings
title_sort on the lattice of cyclic codes over finite chain rings
topic finite chain rings
cyclotomic cosets
linear code
cyclic code
trace map
13B05
94B05
94B15
03G10
16P10
topic_facet finite chain rings
cyclotomic cosets
linear code
cyclic code
trace map
13B05
94B05
94B15
03G10
16P10
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/431
work_keys_str_mv AT fotuetabuealexandre onthelatticeofcycliccodesoverfinitechainrings
AT mouahachristophe onthelatticeofcycliccodesoverfinitechainrings