Cancellable elements of the lattice of semigroup varieties

We completely determine all commutative semigroup varieties that are cancellable elements of the lattice SEM of all semigroup varieties. In particular, we verify that a commutative semigroup variety is a cancellable element of the lattice SEM if and only if it is a modular element of this lattice.

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Gusev, Sergey Valentinovich, Skokov, Dmitry Vyacheslavovich, Vernikov, Boris Munevich
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/436
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-436
record_format ojs
spelling admjournalluguniveduua-article-4362018-10-20T08:02:25Z Cancellable elements of the lattice of semigroup varieties Gusev, Sergey Valentinovich Skokov, Dmitry Vyacheslavovich Vernikov, Boris Munevich semigroup, variety, cancellable element of a lattice, modular element of a lattice 20M07; 08B15 We completely determine all commutative semigroup varieties that are cancellable elements of the lattice SEM of all semigroup varieties. In particular, we verify that a commutative semigroup variety is a cancellable element of the lattice SEM if and only if it is a modular element of this lattice. Lugansk National Taras Shevchenko University Russian Foundation for Basic Research Ministry of Education and Science of the Russian Federation 2018-10-20 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/436 Algebra and Discrete Mathematics; Vol 26, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/436/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/436/189 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/436/203 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/436/204 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-10-20T08:02:25Z
collection OJS
language English
topic semigroup
variety
cancellable element of a lattice
modular element of a lattice
20M07
08B15
spellingShingle semigroup
variety
cancellable element of a lattice
modular element of a lattice
20M07
08B15
Gusev, Sergey Valentinovich
Skokov, Dmitry Vyacheslavovich
Vernikov, Boris Munevich
Cancellable elements of the lattice of semigroup varieties
topic_facet semigroup
variety
cancellable element of a lattice
modular element of a lattice
20M07
08B15
format Article
author Gusev, Sergey Valentinovich
Skokov, Dmitry Vyacheslavovich
Vernikov, Boris Munevich
author_facet Gusev, Sergey Valentinovich
Skokov, Dmitry Vyacheslavovich
Vernikov, Boris Munevich
author_sort Gusev, Sergey Valentinovich
title Cancellable elements of the lattice of semigroup varieties
title_short Cancellable elements of the lattice of semigroup varieties
title_full Cancellable elements of the lattice of semigroup varieties
title_fullStr Cancellable elements of the lattice of semigroup varieties
title_full_unstemmed Cancellable elements of the lattice of semigroup varieties
title_sort cancellable elements of the lattice of semigroup varieties
description We completely determine all commutative semigroup varieties that are cancellable elements of the lattice SEM of all semigroup varieties. In particular, we verify that a commutative semigroup variety is a cancellable element of the lattice SEM if and only if it is a modular element of this lattice.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/436
work_keys_str_mv AT gusevsergeyvalentinovich cancellableelementsofthelatticeofsemigroupvarieties
AT skokovdmitryvyacheslavovich cancellableelementsofthelatticeofsemigroupvarieties
AT vernikovborismunevich cancellableelementsofthelatticeofsemigroupvarieties
first_indexed 2025-12-02T15:26:42Z
last_indexed 2025-12-02T15:26:42Z
_version_ 1850410745582321664