On the number of topologies on a finite set

We denote the number of distinct topologies which can be defined on a set \(X\) with \(n\) elements by \(T(n)\). Similarly, \(T_0(n)\) denotes the number of distinct \(T_0\) topologies on the set \(X\). In the present paper, we prove that for any prime \(p\), \(T(p^k)\equiv k+1 \ (mod \ p)\), and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
1. Verfasser: Kizmaz, M. Yasir
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/437
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-437
record_format ojs
spelling admjournalluguniveduua-article-4372019-03-23T17:44:10Z On the number of topologies on a finite set Kizmaz, M. Yasir topology, finite sets, \(T_0\) topology 11B50; 11B05 We denote the number of distinct topologies which can be defined on a set \(X\) with \(n\) elements by \(T(n)\). Similarly, \(T_0(n)\) denotes the number of distinct \(T_0\) topologies on the set \(X\). In the present paper, we prove that for any prime \(p\), \(T(p^k)\equiv k+1 \ (mod \ p)\), and that for each natural number \(n\) there exists a unique \(k\) such that \(T(p+n)\equiv k \ (mod \ p)\). We calculate \(k\) for \(n=0,1,2,3,4\). We give an alternative proof for a result of Z.I. Borevich to the effect that \(T_0(p+n)\equiv T_0(n+1) \ (mod \ p)\). Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/437 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/437/pdf Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-03-23T17:44:10Z
collection OJS
language English
topic topology
finite sets
\(T_0\) topology
11B50
11B05
spellingShingle topology
finite sets
\(T_0\) topology
11B50
11B05
Kizmaz, M. Yasir
On the number of topologies on a finite set
topic_facet topology
finite sets
\(T_0\) topology
11B50
11B05
format Article
author Kizmaz, M. Yasir
author_facet Kizmaz, M. Yasir
author_sort Kizmaz, M. Yasir
title On the number of topologies on a finite set
title_short On the number of topologies on a finite set
title_full On the number of topologies on a finite set
title_fullStr On the number of topologies on a finite set
title_full_unstemmed On the number of topologies on a finite set
title_sort on the number of topologies on a finite set
description We denote the number of distinct topologies which can be defined on a set \(X\) with \(n\) elements by \(T(n)\). Similarly, \(T_0(n)\) denotes the number of distinct \(T_0\) topologies on the set \(X\). In the present paper, we prove that for any prime \(p\), \(T(p^k)\equiv k+1 \ (mod \ p)\), and that for each natural number \(n\) there exists a unique \(k\) such that \(T(p+n)\equiv k \ (mod \ p)\). We calculate \(k\) for \(n=0,1,2,3,4\). We give an alternative proof for a result of Z.I. Borevich to the effect that \(T_0(p+n)\equiv T_0(n+1) \ (mod \ p)\).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/437
work_keys_str_mv AT kizmazmyasir onthenumberoftopologiesonafiniteset
first_indexed 2025-12-02T15:42:55Z
last_indexed 2025-12-02T15:42:55Z
_version_ 1850411765576237056