On the number of topologies on a finite set
We denote the number of distinct topologies which can be defined on a set \(X\) with \(n\) elements by \(T(n)\). Similarly, \(T_0(n)\) denotes the number of distinct \(T_0\) topologies on the set \(X\). In the present paper, we prove that for any prime \(p\), \(T(p^k)\equiv k+1 \ (mod \ p)\), and th...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2019
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/437 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-437 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-4372019-03-23T17:44:10Z On the number of topologies on a finite set Kizmaz, M. Yasir topology, finite sets, \(T_0\) topology 11B50; 11B05 We denote the number of distinct topologies which can be defined on a set \(X\) with \(n\) elements by \(T(n)\). Similarly, \(T_0(n)\) denotes the number of distinct \(T_0\) topologies on the set \(X\). In the present paper, we prove that for any prime \(p\), \(T(p^k)\equiv k+1 \ (mod \ p)\), and that for each natural number \(n\) there exists a unique \(k\) such that \(T(p+n)\equiv k \ (mod \ p)\). We calculate \(k\) for \(n=0,1,2,3,4\). We give an alternative proof for a result of Z.I. Borevich to the effect that \(T_0(p+n)\equiv T_0(n+1) \ (mod \ p)\). Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/437 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/437/pdf Copyright (c) 2019 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2019-03-23T17:44:10Z |
| collection |
OJS |
| language |
English |
| topic |
topology finite sets \(T_0\) topology 11B50 11B05 |
| spellingShingle |
topology finite sets \(T_0\) topology 11B50 11B05 Kizmaz, M. Yasir On the number of topologies on a finite set |
| topic_facet |
topology finite sets \(T_0\) topology 11B50 11B05 |
| format |
Article |
| author |
Kizmaz, M. Yasir |
| author_facet |
Kizmaz, M. Yasir |
| author_sort |
Kizmaz, M. Yasir |
| title |
On the number of topologies on a finite set |
| title_short |
On the number of topologies on a finite set |
| title_full |
On the number of topologies on a finite set |
| title_fullStr |
On the number of topologies on a finite set |
| title_full_unstemmed |
On the number of topologies on a finite set |
| title_sort |
on the number of topologies on a finite set |
| description |
We denote the number of distinct topologies which can be defined on a set \(X\) with \(n\) elements by \(T(n)\). Similarly, \(T_0(n)\) denotes the number of distinct \(T_0\) topologies on the set \(X\). In the present paper, we prove that for any prime \(p\), \(T(p^k)\equiv k+1 \ (mod \ p)\), and that for each natural number \(n\) there exists a unique \(k\) such that \(T(p+n)\equiv k \ (mod \ p)\). We calculate \(k\) for \(n=0,1,2,3,4\). We give an alternative proof for a result of Z.I. Borevich to the effect that \(T_0(p+n)\equiv T_0(n+1) \ (mod \ p)\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2019 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/437 |
| work_keys_str_mv |
AT kizmazmyasir onthenumberoftopologiesonafiniteset |
| first_indexed |
2025-12-02T15:42:55Z |
| last_indexed |
2025-12-02T15:42:55Z |
| _version_ |
1850411765576237056 |