Projectivity and flatness over the graded ring of normalizing elements

Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Guédénon, T.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2015
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G\) any subgroup of the monoid \(Z(H,A)\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of \(A\). When \(A\) is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of \(A\) replacing \(Z(H,A)\) by the set \(\chi(H,Z(A)^H)\) of all algebra maps from \(H\) to \(Z(A)^H\), where \(Z(A)\) is the center of \(A\).