Projectivity and flatness over the graded ring of normalizing elements
Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2015
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-44 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-442015-09-28T11:22:08Z Projectivity and flatness over the graded ring of normalizing elements Guédénon, T. projective module, flat module, bialgebra, smash product, graded ring, normalizing element, weakly semi-invariant element 16D40, 16W50, 16W30 Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G\) any subgroup of the monoid \(Z(H,A)\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of \(A\). When \(A\) is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of \(A\) replacing \(Z(H,A)\) by the set \(\chi(H,Z(A)^H)\) of all algebra maps from \(H\) to \(Z(A)^H\), where \(Z(A)\) is the center of \(A\). Lugansk National Taras Shevchenko University 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44/11 Copyright (c) 2015 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2015-09-28T11:22:08Z |
| collection |
OJS |
| language |
English |
| topic |
projective module flat module bialgebra smash product graded ring normalizing element weakly semi-invariant element 16D40 16W50 16W30 |
| spellingShingle |
projective module flat module bialgebra smash product graded ring normalizing element weakly semi-invariant element 16D40 16W50 16W30 Guédénon, T. Projectivity and flatness over the graded ring of normalizing elements |
| topic_facet |
projective module flat module bialgebra smash product graded ring normalizing element weakly semi-invariant element 16D40 16W50 16W30 |
| format |
Article |
| author |
Guédénon, T. |
| author_facet |
Guédénon, T. |
| author_sort |
Guédénon, T. |
| title |
Projectivity and flatness over the graded ring of normalizing elements |
| title_short |
Projectivity and flatness over the graded ring of normalizing elements |
| title_full |
Projectivity and flatness over the graded ring of normalizing elements |
| title_fullStr |
Projectivity and flatness over the graded ring of normalizing elements |
| title_full_unstemmed |
Projectivity and flatness over the graded ring of normalizing elements |
| title_sort |
projectivity and flatness over the graded ring of normalizing elements |
| description |
Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G\) any subgroup of the monoid \(Z(H,A)\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of \(A\). When \(A\) is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of \(A\) replacing \(Z(H,A)\) by the set \(\chi(H,Z(A)^H)\) of all algebra maps from \(H\) to \(Z(A)^H\), where \(Z(A)\) is the center of \(A\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2015 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44 |
| work_keys_str_mv |
AT guedenont projectivityandflatnessoverthegradedringofnormalizingelements |
| first_indexed |
2025-12-02T15:44:34Z |
| last_indexed |
2025-12-02T15:44:34Z |
| _version_ |
1850411869393649664 |