Projectivity and flatness over the graded ring of normalizing elements

Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Guédénon, T.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2015
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-44
record_format ojs
spelling admjournalluguniveduua-article-442015-09-28T11:22:08Z Projectivity and flatness over the graded ring of normalizing elements Guédénon, T. projective module, flat module, bialgebra, smash product, graded ring, normalizing element, weakly semi-invariant element 16D40, 16W50, 16W30 Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G\) any subgroup of the monoid \(Z(H,A)\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of \(A\). When \(A\) is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of \(A\) replacing \(Z(H,A)\) by the set \(\chi(H,Z(A)^H)\) of all algebra maps from \(H\) to \(Z(A)^H\), where \(Z(A)\) is the center of \(A\). Lugansk National Taras Shevchenko University 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44/11 Copyright (c) 2015 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2015-09-28T11:22:08Z
collection OJS
language English
topic projective module
flat module
bialgebra
smash product
graded ring
normalizing element
weakly semi-invariant element
16D40
16W50
16W30
spellingShingle projective module
flat module
bialgebra
smash product
graded ring
normalizing element
weakly semi-invariant element
16D40
16W50
16W30
Guédénon, T.
Projectivity and flatness over the graded ring of normalizing elements
topic_facet projective module
flat module
bialgebra
smash product
graded ring
normalizing element
weakly semi-invariant element
16D40
16W50
16W30
format Article
author Guédénon, T.
author_facet Guédénon, T.
author_sort Guédénon, T.
title Projectivity and flatness over the graded ring of normalizing elements
title_short Projectivity and flatness over the graded ring of normalizing elements
title_full Projectivity and flatness over the graded ring of normalizing elements
title_fullStr Projectivity and flatness over the graded ring of normalizing elements
title_full_unstemmed Projectivity and flatness over the graded ring of normalizing elements
title_sort projectivity and flatness over the graded ring of normalizing elements
description Let \(k\) be a field, \(H\) a cocommutative bialgebra, \(A\) a commutative left \(H\)-module algebra, \(Hom(H,A)\) the $k$-algebra of the \(k\)-linear maps from \(H\) to \(A\) under the convolution product, \(Z(H,A)\) the submonoid of \(Hom(H,A)\) whose elements satisfy the cocycle condition and \(G\) any subgroup of the monoid \(Z(H,A)\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of \(A\). When \(A\) is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of \(A\) replacing \(Z(H,A)\) by the set \(\chi(H,Z(A)^H)\) of all algebra maps from \(H\) to \(Z(A)^H\), where \(Z(A)\) is the center of \(A\).
publisher Lugansk National Taras Shevchenko University
publishDate 2015
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/44
work_keys_str_mv AT guedenont projectivityandflatnessoverthegradedringofnormalizingelements
first_indexed 2025-12-02T15:44:34Z
last_indexed 2025-12-02T15:44:34Z
_version_ 1850411869393649664