Galois orders of symmetric differential operators

In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Futorny, Vyacheslav, Schwarz, João
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2017
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/442
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543306691903488
author Futorny, Vyacheslav
Schwarz, João
author_facet Futorny, Vyacheslav
Schwarz, João
author_sort Futorny, Vyacheslav
baseUrl_str
collection OJS
datestamp_date 2017-04-10T07:40:45Z
description In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impact on the structure theory of algebras.In particular, this abstract framework has provided a new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical and the quantum case for \(gl_n\) and \(sl_n\) in~[18] and~[21], respectively.We will give a detailed proof of the Gelfand-Kirillov Conjecture in the classical case and show that the algebra of symmetric differential operators has a structure of a Galois order.
first_indexed 2025-12-02T15:26:44Z
format Article
id admjournalluguniveduua-article-442
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:26:44Z
publishDate 2017
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-4422017-04-10T07:40:45Z Galois orders of symmetric differential operators Futorny, Vyacheslav Schwarz, João Weyl algebra, invariant differential operators, Galois order, filed of fractions 13N10, 16D30, 16S32, 16S85 In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impact on the structure theory of algebras.In particular, this abstract framework has provided a new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical and the quantum case for \(gl_n\) and \(sl_n\) in~[18] and~[21], respectively.We will give a detailed proof of the Gelfand-Kirillov Conjecture in the classical case and show that the algebra of symmetric differential operators has a structure of a Galois order. Lugansk National Taras Shevchenko University 2017-04-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/442 Algebra and Discrete Mathematics; Vol 23, No 1 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/442/92 Copyright (c) 2017 Algebra and Discrete Mathematics
spellingShingle Weyl algebra
invariant differential operators
Galois order
filed of fractions
13N10
16D30
16S32
16S85
Futorny, Vyacheslav
Schwarz, João
Galois orders of symmetric differential operators
title Galois orders of symmetric differential operators
title_full Galois orders of symmetric differential operators
title_fullStr Galois orders of symmetric differential operators
title_full_unstemmed Galois orders of symmetric differential operators
title_short Galois orders of symmetric differential operators
title_sort galois orders of symmetric differential operators
topic Weyl algebra
invariant differential operators
Galois order
filed of fractions
13N10
16D30
16S32
16S85
topic_facet Weyl algebra
invariant differential operators
Galois order
filed of fractions
13N10
16D30
16S32
16S85
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/442
work_keys_str_mv AT futornyvyacheslav galoisordersofsymmetricdifferentialoperators
AT schwarzjoao galoisordersofsymmetricdifferentialoperators