Classification of homogeneous Fourier matrices
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual \(C...
Збережено в:
| Дата: | 2019 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2019
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/446 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-446 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-4462019-04-09T04:51:45Z Classification of homogeneous Fourier matrices Singh, Gurmail modular data, Fourier matrices, fusion rings, \(C\)-algebras 05E30; 05E99; 81R05 Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual \(C\)-algebras that satisfy a certain condition. We prove that a homogenous \(C\)-algebra arising from a Fourier matrix has all the degrees equal to \(1\). Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/446 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/446/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/446/193 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/446/504 Copyright (c) 2019 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2019-04-09T04:51:45Z |
| collection |
OJS |
| language |
English |
| topic |
modular data Fourier matrices fusion rings \(C\)-algebras 05E30 05E99 81R05 |
| spellingShingle |
modular data Fourier matrices fusion rings \(C\)-algebras 05E30 05E99 81R05 Singh, Gurmail Classification of homogeneous Fourier matrices |
| topic_facet |
modular data Fourier matrices fusion rings \(C\)-algebras 05E30 05E99 81R05 |
| format |
Article |
| author |
Singh, Gurmail |
| author_facet |
Singh, Gurmail |
| author_sort |
Singh, Gurmail |
| title |
Classification of homogeneous Fourier matrices |
| title_short |
Classification of homogeneous Fourier matrices |
| title_full |
Classification of homogeneous Fourier matrices |
| title_fullStr |
Classification of homogeneous Fourier matrices |
| title_full_unstemmed |
Classification of homogeneous Fourier matrices |
| title_sort |
classification of homogeneous fourier matrices |
| description |
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual \(C\)-algebras that satisfy a certain condition. We prove that a homogenous \(C\)-algebra arising from a Fourier matrix has all the degrees equal to \(1\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2019 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/446 |
| work_keys_str_mv |
AT singhgurmail classificationofhomogeneousfouriermatrices |
| first_indexed |
2025-12-02T15:26:47Z |
| last_indexed |
2025-12-02T15:26:47Z |
| _version_ |
1850411872399917056 |