Classification of homogeneous Fourier matrices

Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). In this paper, we show that there is a one-to-one correspondence between  Fourier matrices associated to modular data and self-dual \(C...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Singh, Gurmail
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/446
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-446
record_format ojs
spelling admjournalluguniveduua-article-4462019-04-09T04:51:45Z Classification of homogeneous Fourier matrices Singh, Gurmail modular data, Fourier matrices, fusion rings, \(C\)-algebras 05E30; 05E99; 81R05 Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). In this paper, we show that there is a one-to-one correspondence between  Fourier matrices associated to modular data and self-dual \(C\)-algebras that satisfy a certain condition. We prove that a homogenous \(C\)-algebra arising from a Fourier matrix has all the degrees equal to \(1\). Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/446 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/446/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/446/193 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/446/504 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-04-09T04:51:45Z
collection OJS
language English
topic modular data
Fourier matrices
fusion rings
\(C\)-algebras
05E30
05E99
81R05
spellingShingle modular data
Fourier matrices
fusion rings
\(C\)-algebras
05E30
05E99
81R05
Singh, Gurmail
Classification of homogeneous Fourier matrices
topic_facet modular data
Fourier matrices
fusion rings
\(C\)-algebras
05E30
05E99
81R05
format Article
author Singh, Gurmail
author_facet Singh, Gurmail
author_sort Singh, Gurmail
title Classification of homogeneous Fourier matrices
title_short Classification of homogeneous Fourier matrices
title_full Classification of homogeneous Fourier matrices
title_fullStr Classification of homogeneous Fourier matrices
title_full_unstemmed Classification of homogeneous Fourier matrices
title_sort classification of homogeneous fourier matrices
description Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). In this paper, we show that there is a one-to-one correspondence between  Fourier matrices associated to modular data and self-dual \(C\)-algebras that satisfy a certain condition. We prove that a homogenous \(C\)-algebra arising from a Fourier matrix has all the degrees equal to \(1\).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/446
work_keys_str_mv AT singhgurmail classificationofhomogeneousfouriermatrices
first_indexed 2025-12-02T15:26:47Z
last_indexed 2025-12-02T15:26:47Z
_version_ 1850411872399917056